DOI QR코드

DOI QR Code

Effect of 50 ㎛ class granules on the Injection Behavior of Brushite Bone Cement Prepared via Pre-dissolution Route

  • Mun, Da Hye (School of Advanced Materials Engineering, The Center of Biomedical Materials and Biotechnology, Andong National University) ;
  • Lee, Sang Cheon (Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University) ;
  • Oh, Kyung-Sik (School of Advanced Materials Engineering, The Center of Biomedical Materials and Biotechnology, Andong National University)
  • Received : 2020.11.27
  • Accepted : 2020.12.23
  • Published : 2020.12.28

Abstract

The bone cement used for vertebroplasty must be sufficiently injectable. The introduction of granules reduces the amount of liquid required for liquefaction, implying that higher fluidity is achieved with the same amount of liquid. By employing β-tricalcium phosphate granules with an average diameter of 50 ㎛, changes in injectability are observed based on the paste preparation route and granular fraction. To obtain acceptable injectability, phase separation must be suppressed during injection, and sufficient capillary pressure to combine powder and liquid must work evenly throughout the paste. To achieve this, the granules should be evenly distributed. Reduced injection rates are observed for dry mixing and excessive granular content, owing to phase separation. All these correspond to conditions under which the clustered granules weakened the capillary pressure. The injected ratio of the paste formed by wet mixing displayed an inverted U-type shift with the granular fraction. The mixture of granules and powder resulted in an increase in the solid volume fraction, and a decrease in the liquid limit. This resulted in the enhancement of the liquidity, owing to the added liquid. It is inferred that the addition of granules improves the injectability, provided that the capillary pressure in the paste is maintained.

Keywords

References

  1. S. M. Belkoff, J. M. Mathis and L. E. Jasper: Am. J. Neuroradiol., 23 (2002) 1647.
  2. F. Theiss, D. Apelt, B. Brand, A. Kutter, K. Zlinksky, M.Bohner, S. Matter, C. Frei, J. A. Auer and B. von Rechenber: Biomaterials, 26 (2005) 4383. https://doi.org/10.1016/j.biomaterials.2004.11.056
  3. F. Tancret, J. M. Bouler, J. Chamousset and L. M. Minois: J. Eur. Ceram. Soc., 26 (2006) 3647. https://doi.org/10.1016/j.jeurceramsoc.2005.12.015
  4. F. Pecqueux, F. Tancret, N. Payraudeau and J. M. Bouler: J. Eur. Ceram. Soc., 30 (2010) 819. https://doi.org/10.1016/j.jeurceramsoc.2009.09.017
  5. K. S. Oh, S. R. Kim and P. Boch: Key Eng. Mat., 254-256 (2004) 237. https://doi.org/10.4028/www.scientific.net/KEM.254-256.237
  6. A. A. Mirtchi, J. Lemaitre and N. Terao: Biomaterials, 10 (1989) 475. https://doi.org/10.1016/0142-9612(89)90089-6
  7. H. H. Jo and K. S. Oh: J. Kor. Ceram. Soc., 55 (2018) 590. https://doi.org/10.4191/kcers.2018.55.6.08
  8. M. Bohner and G. Baroud: Biomaterials, 26 (2005) 1553. https://doi.org/10.1016/j.biomaterials.2004.05.010
  9. M. Habib, G. Baroud, F. Gitzhofer and M. Bohner: Acta Biomater., 6 (2010) 250. https://doi.org/10.1016/j.actbio.2009.06.012
  10. S. L. Rough, D. I. Wilson and J. Bridgwater: Chem. Eng. Res. Des., 80 (2002) 701. https://doi.org/10.1205/026387602320776786
  11. M. Bohner and U. Gbureck: J Biomed. Mater. Res. Part B Appl. Biomater., 84 (2008) 375.
  12. H. Andrianjatovo, F. Jose and J. Lemaitre: J. Mater. Sci.: Mater. Med., 7 (1996) 34. https://doi.org/10.1007/BF00121187
  13. A. Ortiz: Appl. Radiol., 37 (2008) 10.
  14. J. Zhang, W. Liu, V. Schnitzler, F. Tancret and J. M. Bouler: Acta Biomater., 10 (2014) 1035. https://doi.org/10.1016/j.actbio.2013.11.001
  15. J. S. Reed: Principles of Ceramics Processing, 2nd edn, John Wiley & Sons, (1995) 338.
  16. C. C. Furnas: Ind. Eng. Chem., 23 (1931) 1052. https://doi.org/10.1021/ie50261a017
  17. X. Chateau: 6 - Particle packing and the rheology of concrete, in: N. Roussel (Ed.), Understanding the Rheology of Concrete, Woodhead Publishing, (2012) 117.