DOI QR코드

DOI QR Code

Real Scale Experiment for Suspended Solid Transport Analysis and Modeling of Particle Dispersion Model

부유 물질 거동 분석을 위한 실규모 실험 및 입자 분산 모형 적용

  • Shin, Jaehyun (Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Inhwan (Seoul National University of Science and Technology) ;
  • Seong, Hoje (Korea Institute of Civil Engineering and Building Technology) ;
  • Rhee, Dong Sop (Korea Institute of Civil Engineering and Building Technology)
  • 신재현 (한국건설기술연구원 국토보전본부) ;
  • 박인환 (서울과학기술대학교 건설시스템공학과) ;
  • 성호제 (한국건설기술연구원 국토보전본부) ;
  • 이동섭 (한국건설기술연구원 국토보전본부)
  • Received : 2020.11.23
  • Accepted : 2020.12.20
  • Published : 2020.12.28

Abstract

In this research a suspended solid transport experiment was conducted in the river experiment center to find the characteristics and dispersion of the material. Modeling by the particle dispersion model was also executed to reproduce the suspended solid transport. The suspended solid was consisted of a mixture of silica and water using a mixing equipment, which was then introduced into a real-scale flume and measured with the laser-diffraction based particle size analyzer(LISST) to find the concentration of the material. The comparison between the measured suspended solid concentration using drone images and particle size analyzers, with the model showed a good match overall, which proved the applicability of the model. Along with finding the model applicability, the research showed the potential for suspended solid estimation in high flow situations with high rainfall.

본 연구에서는 하천실험센터에서 부유 물질 실험을 수행하여 부유 물질의 거동 및 확산을 관찰하고 이를 입자분산모형을 통하여 그 이동을 구현하고자 하였다. 규사를 물과 믹서기를 이용하여 혼합한 후 실규모 크기의 실험수로에 인위적으로 투입하고 레이저부유사측정기(LISST)를 이용하여 부유 물질의 농도를 측정하였다. 실험에서 드론 이미지 및 부유사 측정기 관측 데이터와 입자 분산 모형을 통해 부유 물질의 거동을 모의하여 비교한 결과, 비교적 실험 결과가 구현이 잘 된 것을 확인할 수 있었다. 이를 통하여 입자 분산 모형의 적용성은 물론, 높은 강우량으로 인한 유량 발생 시 부유 물질 예측 활용성을 기대할 수 있게 되었다.

Keywords

References

  1. W. Wu. (2004). Depth-averaged two-dimensional numerical modeling of unsteady flow and nonuniform sediment transport in open channels. Journal of Hydraulic Engineering, 130(10), 1013-1024. DOI: 10.1061/(ASCE)0733-9429(2004)130:9(914)
  2. W. Wu, W. Rodi & T. Wenka. (2000). 3D numerical modeling of flow and sediment transport in open channels. Journal of Hydraulic Engineering, 126(1), 4-15. DOI : 10.1061/(ASCE)0733-9429(2000)126:1(4)
  3. Y. Iso & K. Kamemoto. (2008). A Grid-Free Lagrangian Approach of Vortex Method and Particle Trajectory Tracking Method Applied to Internal Fluid-Solid Two-Phase Flows. Journal of Fluids Engineering, 130(1). DOI : 10.1115/1.2813139
  4. A. M. De Girolamo, G. Pappagallo & A. L. Porto. (2015). Temporal variability of suspended sediment transport and rating curves in a Mediterranean river basin: The Celone (SE Italy). Catena, 128, 135-143. DOI : 10.1016/j.catena.2014.09.020
  5. J. Jiang, A. W. K. Law & N. S. Cheng. (2004). Two-phase modeling of suspended sediment distribution in open channel flows. Journal of Hydraulic Research, 42(3), 273-281. DOI : 10.1080/00221686.2004.9728392
  6. K. Seo, D. Kim & G. Son (2016). Estimation of Suspended Sediment Concentration in Small Stream with Acoustic Backscatter from Horizontal ADCP based on Real-Scale Field Experiment. Journal of the Korean Society of Civil Engineers. 36(6), 1023-1035. DOI : 10.12652/Ksce.2016.36.6.1023
  7. T. E. Lisle, J. E. Pizzuto, H. Ikeda, F. Iseya & Y. Kodama. (1997). Evolution of a sediment wave in an experimental channel. Water Resources Research, 33(8), 1971-1981. DOI : 10.1029/97WR01180
  8. M. A. Madej, D. G. Sutherland, T. E. Lisle & B. Pryor, (2009). Channel responses to varying sediment input: A flume experiment modeled after Redwood Creek, California. Geomorphology, 103(4), 507-519. DOI: 10.1016/j.geomorph.2008.07.017
  9. I. Park, & I. W. Seo. (2018). Modeling non-Fickian pollutant mixing in open channel flows using two-dimensional particle dispersion model. Advances in Water Resources, 111, 105-120. DOI: 10.1016/j.advwatres.2017.10.035
  10. I. W. Seo, H. J. Choi, Y. D. Kim & E. J. Han,(2016). Analysis of two-dimensional mixing in natural streams based on transient tracer tests. Journal of Hydraulic Engineering, 142(8), 04016020. DOI: 10.1061/(ASCE)HY.1943-7900.0001118
  11. J. Lim. (2020). Development of Spray Calculation Algorithm Using the Pest Control Drones. Journal of Convergence for Information Technology. 10(10), 135-142. DOI: 10.22156/CS4SMB.2020.10.10.135
  12. K. T. Wong, J. H. Lee & K. W. Choi. (2008). A deterministic Lagrangian particle separation-based method for advective-diffusion problems. Communications in Nonlinear Science and Numerical Simulation, 13(10), 2071-2090. DOI : 10.1016/j.cnsns.2007.05.021
  13. H. B. Fischer, J. E. List, R. C. Y. Koh, J. Imberger, & N. H. Brooks. (1979). Mixing in Inland and Coastal Waters, Academic Press.
  14. G. E. P. Box & M. E. Muller, (1958). A Note on the Generation of Random Normal Deviates. The Annals of Mathematical Statistics, 29, 610-611. https://doi.org/10.1214/aoms/1177706645
  15. I. L. Rozovskii. (1957). Flow of water in bends of open channels. Academy of Sciences of the Ukrainian SSR.
  16. C. G. Song, I. W. Seo & Y. D. Kim. (2012). Analysis of Secondary Current Effect in the Modelling of Shallow Water Flow in Open Channels. Advances in Water Resources, 41, 29-48. DOI : 10.1016/j.advwatres.2012.02.003
  17. S. D. Choi, T. S. Eum, E. T. Shin & C. G. Song. (2020). Numerical Comparisons of Flow Properties Between Indivisual and Comprehensive Consideration of River Inundation and Inland Flooding. Journal of Convergence for Information Technology, 10(10), 115-122. DOI : 10.22156/CS4SMB.2020.10.10.115
  18. D. Yoo & C. G. Song. (2020). Inundation Accident Analysis Using Hydrodynamic Model and Consideration of Disaster Roots Using Cause and Effect Diagram. Journal of Convergence for Information Technology. 10(10), 128-134. DOI : 10.22156/CS4SMB.2020.10.10.128
  19. A. J. Odgaard. (1986). Meander Flow Model. I: Development. Journal of Hydraulic Engineering, 112(12), 1117-1135. DOI : 10.1061/(ASCE)0733-9429(1986)112:12(1117)
  20. L. Schmocker & V. Weitbrecht. (2013). Driftwood: risk analysis and engineering measures. Journal of Hydraulic Engineering, 139(7), 683-695. DOI : 10.1061/(ASCE)HY.1943-7900.0000728
  21. M. H. Park, H. G. Yeo & K. S. Yoon (2011). Instruction of korea institute of civil engineering and building technology river experiment center. Journal of Korea Water Resource Association, 44(11), 58-65.