과제정보
본 연구는 산업통상자원부(MOTIE)와 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제임(No. 20171510102040)
참고문헌
- An, J. W., and Cho, S. Z. (2015). Variational autoencoder based anomaly detection using reconstruction probability, Special Lecture on IE, SNU Data Mining Center, 2, pp. 1-18.
- Fantoni, P. F. (2000). A neuro-fuzzy model applied to full range signal validation of PWR nuclear power plant data, International J ournal of General Systems, 29(2), 305-320. https://doi.org/10.1080/03081070008960935
- Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial nets, Advances in Neural Information rocessing Systems 27 (NIPS 2014), Dec. 8-13, Montreal, Canada.
- Hines, J. W., Uhrig, R. H., and Wrest, D. J. (1998). Use of autoassociative neural networks for signal validation, Journal of Intelligent and Robotic Systems, 21, 143-154. https://doi.org/10.1023/A:1007981322574
- Kim, S. G., Chae, Y. H., and Seong, P. H. (2020). Development of a generative - adversarial - network - based signal reconstruction method for nuclear power plants, Annals of Nuclear Energy, 142, Article 107410.
- Kim, S. G., No, Y. G., and Seong, P. H. (2015). Prediction of severe accident occurrence time using support vector machines, Nuclear Engineering and Technology, 47(1), 74-84. https://doi.org/10.1016/j.net.2014.10.001
- Kim, S. S., Kim, J. I., and Jung, K. C. (2019). Portfolio system using deep learning, Journal of the Korea Industrial Information Systems Research, 24(1), 23-30. https://doi.org/10.9723/JKSIIS.2019.24.1.023
- Kim, S. S., and Hong, K. J. (2017). Development and performance analysis of predictive model for KOSPI 200 index using recurrent neural networks, Journal of the Korea Industrial Information Systems Research, 22(6), 23-29. https://doi.org/10.9723/JKSIIS.2017.22.6.023
- Kingma, D. P., and Welling, M. (2014). Auto-encoding variational Bayes, arXiv: 1312.6114 [stat] https://arxiv.org/abs/1312.6114 (Accessed on Dec. 07th, 2020).
- Kingma, D. P., and Ba, J. L. (2014). Adam: a method for stochastic optimization, arXiv: 1412.6980v9 [cs.LG] https://arxiv.org/abs/1412.6980 (Accessed on Dec. 07th, 2020).
- Korea Atomic Energy Research Institute (1990). Advanced Compact Nuclear Simulator Textbook, Nuclear Training Center in Korea Atomic Energy Research Institute.
- Lim, D. H., Lee, S. H., and Na, M. G. (2010). Smart soft-sensing for the feedwater flowrate at PWRs using a GMDH algorithm, IEEE Transactions on Nuclear Science, 57(1), 340-347. https://doi.org/10.1109/TNS.2009.2035121
- Minar, R. M., Tuan, T. T., and Ahn, H. J. (2020). An Improved VTON (Virtual-try-on) algorithm using a [air of cloth and human image, Journal of the Korea Industrial Information Systems Research, 25(2), 11-18. https://doi.org/10.9723/JKSIIS.2020.25.2.011
- Na, M. G., Park, W. S., and Lim, D. H. (2008). Detection and diagnostics of loss of coolant accident using support vector machines, IEEE Transactions on Nuclear Science, 55(1), 628-636. https://doi.org/10.1109/TNS.2007.911136
- Nair, A. M., and Coble, J. (2017). Bayesian inference for high confidence signal validation and sensor calibration assessment, ANS 10th International Topical Meeting on Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies, Jun. 11-15, San Francisco, CA, pp. 1688-1697.
- No, Y. G., Lee, C. Y., and Seong, P. H. (2018). Development of a prediction method for SAMG entry time in NPPs using the extended group method of data handling (GMDH) model, Annals of Nuclear Energy, 121, 552-556. https://doi.org/10.1016/j.anucene.2018.08.019
- No, Y. G., and Seong, P. H. (2016). Smart-sensing of the aux. feed-water pump performance in NPP severe accidents using advanced GMDH method, Proceedings of the KNS 2016 Spring Meeting, May 11-13. Jeju, Republic of Korea.
- Shaheryar, A., Yin, X., Hao, H., Mahmood, Z., and Abuassba, A. (2018). Selection of optimal denoising-based regularization hyper-parameters for performance improvement in a sensor validation model, Artificial Intelligence, 50(3), pp. 341-382.
- Shaheryar, A., Yin, X., Hao, H., Ali, H., and Iqbal, K. (2016). A Denoising based autoassociative model for robust sensor monitoring in nuclear power plants, Science and Technology of Nuclear Installations, https://doi.org/10.1155/2016/9746948.
- Yang, J. E. (2014). Fukushima Dai-ichi accident: lessons learned and future actions from the risk perspectives, Nuclear Engineering and Technology, 46(1), 27-38. https://doi.org/10.5516/NET.03.2014.702