DOI QR코드

DOI QR Code

주파수 가변 캐비티 대역통과필터의 설계 및 구현

Design and Implementation of a Tunable Cavity Bandpass Filter

  • Kang, Sanggee (School of Computer Information and Communication Engineering, Kunsan National University)
  • 투고 : 2020.12.12
  • 심사 : 2020.12.18
  • 발행 : 2020.12.30

초록

최근에는 수요자의 다양한 요구를 충족하는 서비스를 제공하기 위해서 여러 개의 무선통신 시스템을 하나로 통합한 무선기기에 대한 수요가 증가하고 있다. 다양한 무선통신 시스템으로 구성된 무선기기에는 많은 주파수 고정형 필터가 필요하다. 주파수 가변 필터는 다수의 주파수 고정형 필터를 대체할 수 있으며, 주파수 가변 필터를 사용하면 시스템을 보다 효율적으로 구성할 수 있다. 본 논문에서는 800 ~ 2400MHz 대역에서 동작하는 3-폴 주파수 가변 대역통과필터(BPF)를 설계하였다. 주파수 가변범위를 넓히기 위해서 튜닝 스크류는 스텝을 갖도록 설계하였고, 튜닝 스크류의 조절을 용이하게 하기 위해서 리니어 모터를 사용하였다. 구현한 주파수 가변 BPF는 설계한 주파수 범위에서 동작하며, 삽입손실은 최대 2.82dB, 중심주파수에서 ± 50MHz 이격된 지점에서 최소 18.7dB의 감쇠 성능을 갖는다.

In recent years, the demand for wireless devices incorporating several wireless communication systems into one has been increasing in order to provide services that meet the diverse needs of consumers. Wireless devices consisting of various wireless communication systems require many frequency fixed filters. A frequency tunable filter can replace a number of frequency fixed filters in the wireless devices. If a frequency tunable filter is used in wireless systems, the system can be configured more efficiently. In this paper, a 3-pole frequency tunable BPF(bandpass filter) operating in the frequency band of 800 ~ 2400MHz is designed. In order to widen the operating frequency band, a tuning screw is designed to have a step and a linear motor is used to facilitate the adjustment of the tuning screw. The implemented frequency tunable BPF operates in the designed frequency range and has the maximum insertion loss of 2.82dB in the channel band and the minimum attenuation of 18.7dB at ± 50MHz frequency offset from the center frequency of the band.

키워드

참고문헌

  1. B. W. Kim and S. W. Yun, "Varactor-tuned combline bandpass filter using step-impedance microstrip lines," IEEE Trans. Microwave Theory Tech., vol. 52, no 4, pp. 1279 - 1283, April 2004. https://doi.org/10.1109/TMTT.2004.825626
  2. S.R. Chandler, I.C. Hunter and J.G. Gardiner, "Active varactor tunable bandpass filter," IEEE Microwave and Guided Wave Letters, vol. 3, no 3, pp. 70-71, March 1993. https://doi.org/10.1109/75.205668
  3. https://polezero.com
  4. A. Anand, J. Small, D. Peroulis, and X. Liu, "Theory and design of octave tunable filters with lumped tuning elements," IEEE Trans. Microwave Theory Tech., vol. 61, no. 12, pp. 4353-4364, Dec. 2013. https://doi.org/10.1109/TMTT.2013.2287674
  5. Yu, M., Tassini, B., Keats, B., and Wang, Y. ,"High-performance tunable filters based on air-cavity resonators," IEEE Microwave Magazine, vol. 15, no 5, pp. 83-931, 2014. https://doi.org/10.1109/mmm.2014.2321102
  6. D. Scarbrough, D. Psychogiou, D. Peroulis and C. Goldsmith,"Low-loss, broadly-tunable cavity filter operating at UHF frequencies," IEEE MTT-S International Microwave Symposium, pp. 1-4, 2015.
  7. S. W. Wong, F. Deng, Y. M. Wu, J. Y. Lin, L. Zhu, Q. X. Chu and Y. Yang, "Individually Frequency Tunable Dual and Triple band Filters in a Single Cavity," IEEE Access, vol. 5, pp. 11615-11625, 2017. https://doi.org/10.1109/ACCESS.2017.2719861
  8. Richard J. Cameron, Chandra M. Kudsia and Raafat R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design, and Applications, Wiley & Sons, 2018.
  9. George L. Matthaei, L. Young and E. M. T. Jones, Microwave Filters, Impedance Matching Networks and Coupling Structures, Artech House, 1980.