DOI QR코드

DOI QR Code

Photodynamic Diagnosis and Therapy for Peritoneal Carcinomatosis from Gastrointestinal Cancers: Status, Opportunities, and Challenges

  • Kim, Hyoung-Il (Department of Surgery, Yonsei University College of Medicine) ;
  • Wilson, Brian C. (Princess Margaret Cancer Centre, University Health Network)
  • 투고 : 2020.11.15
  • 심사 : 2020.12.15
  • 발행 : 2020.12.31

초록

Selective accumulation of a photosensitizer and the subsequent response in only the light-irradiated target are advantages of photodynamic diagnosis and therapy. The limited depth of the therapeutic effect is a positive characteristic when treating surface malignancies, such as peritoneal carcinomatosis. For photodynamic diagnosis (PDD), adjunctive use of aminolevulinic acid- protoporphyrin IX-guided fluorescence imaging detects cancer nodules, which would have been missed during assessment using white light visualization only. Furthermore, since few side effects have been reported, this has the potential to become a vital component of diagnostic laparoscopy. A variety of photosensitizers have been examined for photodynamic therapy (PDT), and treatment protocols are heterogeneous in terms of photosensitizer type and dose, photosensitizer-light time interval, and light source wavelength, dose, and dose rate. Although several studies have suggested that PDT has favorable effects in peritoneal carcinomatosis, clinical trials in more homogenous patient groups are required to identify the true benefits. In addition, major complications, such as bowel perforation and capillary leak syndrome, need to be reduced. In the long term, PDD and PDT are likely to be successful therapeutic options for patients with peritoneal carcinomatosis, with several options to optimize the photosensitizer and light delivery parameters to improve safety and efficacy.

키워드

과제정보

This work was supported by a faculty research grant from Yonsei University College of Medicine (6-2020-0088) and by the Princess Margaret Cancer Foundation, Toronto, Canada.

참고문헌

  1. Valdes PA, Jacobs V, Harris BT, Wilson BC, Leblond F, Paulsen KD, et al. Quantitative fluorescence using 5-aminolevulinic acid-induced protoporphyrin IX biomarker as a surgical adjunct in low-grade glioma surgery. J Neurosurg 2015;123:771-780. https://doi.org/10.3171/2014.12.JNS14391
  2. Kwon IG, Son T, Kim HI, Hyung WJ. Fluorescent lymphography-guided lymphadenectomy during robotic radical gastrectomy for gastric cancer. JAMA Surg 2019;154:150-158. https://doi.org/10.1001/jamasurg.2018.4267
  3. Hansen RW, Pedersen CB, Halle B, Korshoej AR, Schulz MK, Kristensen BW, et al. Comparison of 5-aminolevulinic acid and sodium fluorescein for intraoperative tumor visualization in patients with highgrade gliomas: a single-center retrospective study. J Neurosurg 2020;133:1324-1331. https://doi.org/10.3171/2019.6.JNS191531
  4. Li Z, Sun L, Lu Z, Su X, Yang Q, Qu X, et al. Enhanced effect of photodynamic therapy in ovarian cancer using a nanoparticle drug delivery system. Int J Oncol 2015;47:1070-1076. https://doi.org/10.3892/ijo.2015.3079
  5. Tsujimoto H, Morimoto Y, Takahata R, Nomura S, Yoshida K, Horiguchi H, et al. Photodynamic therapy using nanoparticle loaded with indocyanine green for experimental peritoneal dissemination of gastric cancer. Cancer Sci 2014;105:1626-1630. https://doi.org/10.1111/cas.12553
  6. Henderson BW, Dougherty TJ. How does photodynamic therapy work? Photochem Photobiol 1992;55:145-157. https://doi.org/10.1111/j.1751-1097.1992.tb04222.x
  7. Beltran Hernandez I, Yu Y, Ossendorp F, Korbelik M, Oliveira S. Preclinical and clinical evidence of immune responses triggered in oncologic photodynamic therapy: clinical recommendations. J Clin Med 2020;9:333. https://doi.org/10.3390/jcm9020333
  8. Theodoraki MN, Lorenz K, Lotfi R, Furst D, Tsamadou C, Jaekle S, et al. Influence of photodynamic therapy on peripheral immune cell populations and cytokine concentrations in head and neck cancer. Photodiagnosis Photodyn Ther 2017;19:194-201. https://doi.org/10.1016/j.pdpdt.2017.05.015
  9. Valdes PA, Leblond F, Kim A, Harris BT, Wilson BC, Fan X, et al. Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg 2011;115:11-17. https://doi.org/10.3171/2011.2.JNS101451
  10. Wong Kee Song LM, Wilson BC. Endoscopic detection of early upper GI cancers. Best Pract Res Clin Gastroenterol 2005;19:833-856. https://doi.org/10.1016/j.bpg.2005.04.006
  11. Davies N, Wilson BC. Tetherless fiber-coupled optical sources for extended metronomic photodynamic therapy. Photodiagnosis Photodyn Ther 2007;4:184-189. https://doi.org/10.1016/j.pdpdt.2007.03.005
  12. Pinthus JH, Bogaards A, Weersink R, Wilson BC, Trachtenberg J. Photodynamic therapy for urological malignancies: past to current approaches. J Urol 2006;175:1201-1207. https://doi.org/10.1016/S0022-5347(05)00701-9
  13. Moghissi K, Dixon K, Stringer M, Thorpe JA. Photofrin PDT for early stage oesophageal cancer: long term results in 40 patients and literature review. Photodiagnosis Photodyn Ther 2009;6:159-166. https://doi.org/10.1016/j.pdpdt.2009.07.026
  14. de Albuquerque IO, Nunes J, Figueiro Longo JP, Muehlmann LA, Azevedo RB. Photodynamic therapy in superficial basal cell carcinoma treatment. Photodiagnosis Photodyn Ther 2019;27:428-432. https://doi.org/10.1016/j.pdpdt.2019.07.017
  15. Patel CM, Sahdev A, Reznek RH. CT, MRI and PET imaging in peritoneal malignancy. Cancer Imaging 2011;11:123-139. https://doi.org/10.1102/1470-7330.2011.0016
  16. Kishi K, Fujiwara Y, Yano M, Inoue M, Miyashiro I, Motoori M, et al. Staging laparoscopy using ALAmediated photodynamic diagnosis improves the detection of peritoneal metastases in advanced gastric cancer. J Surg Oncol 2012;106:294-298. https://doi.org/10.1002/jso.23075
  17. Yoshida K, Yamaguchi K, Okumura N, Tanahashi T, Kodera Y. Is conversion therapy possible in stage IV gastric cancer: the proposal of new biological categories of classification. Gastric Cancer 2016;19:329-338. https://doi.org/10.1007/s10120-015-0575-z
  18. Ishigami H, Fujiwara Y, Fukushima R, Nashimoto A, Yabusaki H, Imano M, et al. Phase III trial comparing intraperitoneal and intravenous paclitaxel plus S-1 versus cisplatin plus S-1 in patients with gastric cancer with peritoneal metastasis: PHOENIX-GC trial. J Clin Oncol 2018;36:1922-1929. https://doi.org/10.1200/JCO.2018.77.8613
  19. Dakwar GR, Shariati M, Willaert W, Ceelen W, De Smedt SC, Remaut K. Nanomedicine-based intraperitoneal therapy for the treatment of peritoneal carcinomatosis - Mission possible? Adv Drug Deliv Rev 2017;108:13-24. https://doi.org/10.1016/j.addr.2016.07.001
  20. Hahn SM, Fraker DL, Mick R, Metz J, Busch TM, Smith D, et al. A phase II trial of intraperitoneal photodynamic therapy for patients with peritoneal carcinomatosis and sarcomatosis. Clin Cancer Res 2006;12:2517-2525. https://doi.org/10.1158/1078-0432.CCR-05-1625
  21. Wierrani F, Fiedler D, Grin W, Henry M, Krammer B, Grunberger W. Intraoperative mesotetrahydroxyphenylchlorin-based photodynamic therapy in metastatic gynecologic cancer tissue: initial results. J Gynecol Surg 1997;13:23-29. https://doi.org/10.1089/gyn.1997.13.23
  22. Harlow SP, Rodriguez-Bigas M, Mang T, Petrelli NJ. Intraoperative photodynamic therapy as an adjunct to surgery for recurrent rectal cancer. Ann Surg Oncol 1995;2:228-232. https://doi.org/10.1007/bf02307028
  23. Allardice JT, Abulafi AM, Grahn MF, Williams NS. Adjuvant intraoperative photodynamic therapy for colorectal carcinoma: a clinical study. Surg Oncol 1994;3:1-10. https://doi.org/10.1016/0960-7404(94)90018-3
  24. DeLaney TF, Sindelar WF, Tochner Z, Smith PD, Friauf WS, Thomas G, et al. Phase I study of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Int J Radiat Oncol Biol Phys 1993;25:445-457. https://doi.org/10.1016/0360-3016(93)90066-5
  25. Canter RJ, Mick R, Kesmodel SB, Raz DJ, Spitz FR, Metz JM, et al. Intraperitoneal photodynamic therapy causes a capillary-leak syndrome. Ann Surg Oncol 2003;10:514-524. https://doi.org/10.1245/ASO.2003.11.005
  26. Kondo Y, Murayama Y, Konishi H, Morimura R, Komatsu S, Shiozaki A, et al. Fluorescent detection of peritoneal metastasis in human colorectal cancer using 5-aminolevulinic acid. Int J Oncol 2014;45:41-46. https://doi.org/10.3892/ijo.2014.2417
  27. Alexander VM, Sano K, Yu Z, Nakajima T, Choyke PL, Ptaszek M, et al. Galactosyl human serum albuminNMP1 conjugate: a near infrared (NIR)-activatable fluorescence imaging agent to detect peritoneal ovarian cancer metastases. Bioconjug Chem 2012;23:1671-1679. https://doi.org/10.1021/bc3002419
  28. Zhong W, Celli JP, Rizvi I, Mai Z, Spring BQ, Yun SH, et al. In vivo high-resolution fluorescence microendoscopy for ovarian cancer detection and treatment monitoring. Br J Cancer 2009;101:2015-2022. https://doi.org/10.1038/sj.bjc.6605436
  29. Collinet P, Sabban F, Cosson M, Farine MO, Villet R, Vinatier D, et al. Laparoscopic photodynamic diagnosis of ovarian cancer peritoneal micro metastasis: an experimental study. Photochem Photobiol 2007;83:647-651. https://doi.org/10.1562/2006-04-13-RA-869
  30. Regis C, Collinet P, Farine MO, Mordon S. Comparison of aminolevulinic acid- and hexylester aminolevulinate-induced protoporphyrin IX fluorescence for the detection of ovarian cancer in a rat model. Photomed Laser Surg 2007;25:304-311. https://doi.org/10.1089/pho.2007.2057
  31. Till H, Bergmann F, Metzger R, Haeberle B, Schaeffer K, von Schweinitz D, et al. Videoscopic fluorescence diagnosis of peritoneal and thoracic metastases from human hepatoblastoma in nude rats. Surg Endosc 2005;19:1483-1486. https://doi.org/10.1007/s00464-005-0316-1
  32. Ludicke F, Gabrecht T, Lange N, Wagnieres G, Van Den Bergh H, Berclaz L, et al. Photodynamic diagnosis of ovarian cancer using hexaminolaevulinate: a preclinical study. Br J Cancer 2003;88:1780-1784. https://doi.org/10.1038/sj.bjc.6600958
  33. Chan JK, Monk BJ, Cuccia D, Pham H, Kimel S, Gu M, et al. Laparoscopic photodynamic diagnosis of ovarian cancer using 5-aminolevulinic acid in a rat model. Gynecol Oncol 2002;87:64-70. https://doi.org/10.1006/gyno.2002.6793
  34. Gahlen J, Prosst RL, Pietschmann M, Haase T, Rheinwald M, Skopp G, et al. Laparoscopic fluorescence diagnosis for intraabdominal fluorescence targeting of peritoneal carcinosis experimental studies. Ann Surg 2002;235:252-260. https://doi.org/10.1097/00000658-200202000-00014
  35. Canis M, Botchorishvili R, Berreni N, Manhes H, Wattiez A, Mage G, et al. 5-aminolevulinic acid-induced (ALA) fluorescence for the laparoscopic diagnosis of peritoneal metastasis. AST an experimental study. Surg Endosc 2001;15:1184-1186. https://doi.org/10.1007/s004640090056
  36. Gahlen J, Pietschmann M, Prosst RL, Herfarth C. Systemic vs local administration of delta-aminolevulinic acid for laparoscopic fluorescence diagnosis of malignant intra-abdominal tumors. Experimental study. Surg Endosc 2001;15:196-199. https://doi.org/10.1007/s004640000243
  37. Aalders MC, Sterenborg HJ, Stewart FA, van der Vange N. Photodetection with 5-aminolevulinic acidinduced protoporphyrin IX in the rat abdominal cavity: drug-dose-dependent fluorescence kinetics. Photochem Photobiol 2000;72:521-525. https://doi.org/10.1562/0031-8655(2000)072<0521:PWAAIP>2.0.CO;2
  38. Gahlen J, Prosst RL, Pietschmann M, Rheinwald M, Haase T, Herfarth C. Spectrometry supports fluorescence staging laparoscopy after intraperitoneal aminolaevulinic acid lavage for gastrointestinal tumours. J Photochem Photobiol B 1999;52:131-135. https://doi.org/10.1016/S1011-1344(99)00119-0
  39. Gahlen J, Stern J, Laubach HH, Pietschmann M, Herfarth C. Improving diagnostic staging laparoscopy using intraperitoneal lavage of delta-aminolevulinic acid (ALA) for laparoscopic fluorescence diagnosis. Surgery 1999;126:469-473. https://doi.org/10.1016/S0039-6060(99)70086-3
  40. Hornung R, Major AL, McHale M, Liaw LH, Sabiniano LA, Tromberg BJ, et al. In vivo detection of metastatic ovarian cancer by means of 5-aminolevulinic acid-induced fluorescence in a rat model. J Am Assoc Gynecol Laparosc 1998;5:141-148. https://doi.org/10.1016/S1074-3804(98)80080-7
  41. Major AL, Rose GS, Chapman CF, Hiserodt JC, Tromberg BJ, Krasieva TB, et al. In vivo fluorescence detection of ovarian cancer in the NuTu-19 epithelial ovarian cancer animal model using 5-aminolevulinic acid (ALA). Gynecol Oncol 1997;66:122-132. https://doi.org/10.1006/gyno.1996.4502
  42. Harada K, Murayama Y, Kubo H, Matsuo H, Morimura R, Ikoma H, et al. Photodynamic diagnosis of peritoneal metastasis in human pancreatic cancer using 5-aminolevulinic acid during staging laparoscopy. Oncol Lett 2018;16:821-828.
  43. Ushimaru Y, Fujiwara Y, Kishi K, Sugimura K, Omori T, Moon JH, et al. Prognostic significance of basing treatment strategy on the results of photodynamic diagnosis in advanced gastric cancer. Ann Surg Oncol 2017;24:983-989. https://doi.org/10.1245/s10434-016-5660-y
  44. Hillemanns P, Wimberger P, Reif J, Stepp H, Klapdor R. Photodynamic diagnosis with 5-aminolevulinic acid for intraoperative detection of peritoneal metastases of ovarian cancer: a feasibility and dose finding study. Lasers Surg Med 2017;49:169-176. https://doi.org/10.1002/lsm.22613
  45. Kishi K, Fujiwara Y, Yano M, Motoori M, Sugimura K, Takahashi H, et al. Usefulness of diagnostic laparoscopy with 5-aminolevulinic acid (ALA)-mediated photodynamic diagnosis for the detection of peritoneal micrometastasis in advanced gastric cancer after chemotherapy. Surg Today 2016;46:1427-1434. https://doi.org/10.1007/s00595-016-1328-2
  46. Yonemura Y, Canbay E, Ishibashi H, Nishino E, Endou Y, Sako S, et al. 5-aminolevulinic acid fluorescence in detection of peritoneal metastases. Asian Pac J Cancer Prev 2016;17:2271-2275. https://doi.org/10.7314/APJCP.2016.17.4.2271
  47. Yonemura Y, Endo Y, Canbay E, Liu Y, Ishibashi H, Takeshita K, et al. Selection of patients by membrane transporter expressions for aminolevulinic acid (ALA)-guided photodynamic detection of peritoneal metastases. Int J Sci 2015;4:66-77.
  48. Namikawa T, Inoue K, Uemura S, Shiga M, Maeda H, Kitagawa H, et al. Photodynamic diagnosis using 5-aminolevulinic acid during gastrectomy for gastric cancer. J Surg Oncol 2014;109:213-217. https://doi.org/10.1002/jso.23487
  49. Kishi K, Fujiwara Y, Yano M, Motoori M, Sugimura K, Ohue M, et al. Diagnostic laparoscopy with 5-aminolevulinic-acid-mediated photodynamic diagnosis enhances the detection of peritoneal micrometastases in advanced gastric cancer. Oncology 2014;87:257-265. https://doi.org/10.1159/000365356
  50. Liu Y, Endo Y, Fujita T, Ishibashi H, Nishioka T, Canbay E, et al. Cytoreductive surgery under aminolevulinic acid-mediated photodynamic diagnosis plus hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from ovarian cancer and primary peritoneal carcinoma: results of a phase I trial. Ann Surg Oncol 2014;21:4256-4262. https://doi.org/10.1245/s10434-014-3901-5
  51. Canbay E, Ishibashi H, Sako S, Kitai T, Nishino E, Hirano M, et al. Photodynamic detection and management of intraperitoneal spreading of primary peritoneal papillary serous carcinoma in a man: report of a case. Surg Today 2014;44:373-377. https://doi.org/10.1007/s00595-013-0500-1
  52. Murayama Y, Ichikawa D, Koizumi N, Komatsu S, Shiozaki A, Kuriu Y, et al. Staging fluorescence laparoscopy for gastric cancer by using 5-aminolevulinic acid. Anticancer Res 2012;32:5421-5427.
  53. Loning MC, Diddens HC, Holl-Ulrich K, Loning U, Kupker W, Diedrich K, et al. Fluorescence staining of human ovarian cancer tissue following application of 5-aminolevulinic acid: fluorescence microscopy studies. Lasers Surg Med 2006;38:549-554. https://doi.org/10.1002/lsm.20302
  54. Zopf T, Schneider AR, Weickert U, Riemann JF, Arnold JC. Improved preoperative tumor staging by 5-aminolevulinic acid induced fluorescence laparoscopy. Gastrointest Endosc 2005;62:763-767. https://doi.org/10.1016/j.gie.2005.05.020
  55. Loning M, Diddens H, Kupker W, Diedrich K, Huttmann G. Laparoscopic fluorescence detection of ovarian carcinoma metastases using 5-aminolevulinic acid-induced protoporphyrin IX. Cancer 2004;100:1650-1656. https://doi.org/10.1002/cncr.20155
  56. Orth K, Russ D, Steiner R, Beger HG. Fluorescence detection of small gastrointestinal tumours: principles, technique, first clinical experience. Langenbecks Arch Surg 2000;385:488-494. https://doi.org/10.1007/s004230000174
  57. Menon C, Kutney SN, Lehr SC, Hendren SK, Busch TM, Hahn SM, et al. Vascularity and uptake of photosensitizer in small human tumor nodules: implications for intraperitoneal photodynamic therapy. Clin Cancer Res 2001;7:3904-3911.
  58. Mikvy P, Messmann H, Regula J, Conio M, Pauer M, Millson CE, et al. Sensitization and photodynamic therapy (PDT) of gastrointestinal tumors with 5-aminolaevulinic acid (ALA) induced protoporphyrin IX (PPIX). A pilot study. Neoplasma 1995;42:109-113.
  59. Kato A, Kataoka H, Yano S, Hayashi K, Hayashi N, Tanaka M, et al. Maltotriose conjugation to a chlorin derivative enhances the antitumor effects of photodynamic therapy in peritoneal dissemination of pancreatic cancer. Mol Cancer Ther 2017;16:1124-1132. https://doi.org/10.1158/1535-7163.MCT-16-0670
  60. Harada T, Nakamura Y, Sato K, Nagaya T, Okuyama S, Ogata F, et al. Near-infrared photoimmunotherapy with galactosyl serum albumin in a model of diffuse peritoneal disseminated ovarian cancer. Oncotarget 2016;7:79408-79416. https://doi.org/10.18632/oncotarget.12710
  61. Ishida M, Kagawa S, Shimoyama K, Takehara K, Noma K, Tanabe S, et al. Trastuzumab-based photoimmunotherapy integrated with viral HER2 transduction inhibits peritoneally disseminated HER2-negative cancer. Mol Cancer Ther 2016;15:402-411. https://doi.org/10.1158/1535-7163.MCT-15-0644
  62. Yokoyama Y, Shigeto T, Miura R, Kobayashi A, Mizunuma M, Yamauchi A, et al. A strategy using photodynamic therapy and clofibric acid to treat peritoneal dissemination of ovarian cancer. Asian Pac J Cancer Prev 2016;17:775-779. https://doi.org/10.7314/APJCP.2016.17.2.775
  63. Sato K, Hanaoka H, Watanabe R, Nakajima T, Choyke PL, Kobayashi H. Near infrared photoimmunotherapy in the treatment of disseminated peritoneal ovarian cancer. Mol Cancer Ther 2015;14:141-150. https://doi.org/10.1158/1535-7163.MCT-14-0658
  64. Sato K, Choyke PL, Kobayashi H. Photoimmunotherapy of gastric cancer peritoneal carcinomatosis in a mouse model. PLoS One 2014;9:e113276. https://doi.org/10.1371/journal.pone.0113276
  65. Hino H, Murayama Y, Nakanishi M, Inoue K, Nakajima M, Otsuji E. 5-Aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes of different wavelengths in a mouse model of peritoneally disseminated gastric cancer. J Surg Res 2013;185:119-126. https://doi.org/10.1016/j.jss.2013.05.048
  66. Mroz P, Xia Y, Asanuma D, Konopko A, Zhiyentayev T, Huang YY, et al. Intraperitoneal photodynamic therapy mediated by a fullerene in a mouse model of abdominal dissemination of colon adenocarcinoma. Nanomedicine (Lond) 2011;7:965-974. https://doi.org/10.1016/j.nano.2011.04.007
  67. Estevez JP, Ascencio M, Colin P, Farine MO, Collinet P, Mordon S. Continuous or fractionated photodynamic therapy? Comparison of three PDT schemes for ovarian peritoneal micrometastasis treatment in a rat model. Photodiagnosis Photodyn Ther 2010;7:251-257. https://doi.org/10.1016/j.pdpdt.2010.07.007
  68. Kishi K, Yano M, Inoue M, Miyashiro I, Motoori M, Tanaka K, et al. Talaporfin-mediated photodynamic therapy for peritoneal metastasis of gastric cancer in an in vivo mouse model: drug distribution and efficacy studies. Int J Oncol 2010;36:313-320.
  69. Piatrouskaya NA, Kharuzhyk SA, Vozmitel MA, Mazurenko AN, Istomin YP. Experimental study of antiangiogenic and photodynamic therapies combination for treatment of peritoneal carcinomatosis: preliminary results. Exp Oncol 2010;32:100-103.
  70. Raue W, Kilian M, Braumann C, Atanassow V, Makareinis A, Caldenas S, et al. Multimodal approach for treatment of peritoneal surface malignancies in a tumour-bearing rat model. Int J Colorectal Dis 2010;25:245-250. https://doi.org/10.1007/s00384-009-0819-7
  71. Ascencio M, Estevez JP, Delemer M, Farine MO, Collinet P, Mordon S. Comparison of continuous and fractionated illumination during hexaminolaevulinate-photodynamic therapy. Photodiagnosis Photodyn Ther 2008;5:210-216. https://doi.org/10.1016/j.pdpdt.2008.09.004
  72. Ascencio M, Collinet P, Farine MO, Mordon S. Protoporphyrin IX fluorescence photobleaching is a useful tool to predict the response of rat ovarian cancer following hexaminolevulinate photodynamic therapy. Lasers Surg Med 2008;40:332-341. https://doi.org/10.1002/lsm.20629
  73. Ascencio M, Delemer M, Farine MO, Jouve E, Collinet P, Mordon S. Evaluation of ALA-PDT of ovarian cancer in the Fisher 344 rat tumor model. Photodiagnosis Photodyn Ther 2007;4:254-260. https://doi.org/10.1016/j.pdpdt.2007.07.003
  74. Song K, Kong B, Li L, Yang Q, Wei Y, Qu X. Intraperitoneal photodynamic therapy for an ovarian cancer ascite model in Fischer 344 rat using hematoporphyrin monomethyl ether. Cancer Sci 2007;98:1959-1964. https://doi.org/10.1111/j.1349-7006.2007.00628.x
  75. del Carmen MG, Rizvi I, Chang Y, Moor AC, Oliva E, Sherwood M, et al. Synergism of epidermal growth factor receptor-targeted immunotherapy with photodynamic treatment of ovarian cancer in vivo. J Natl Cancer Inst 2005;97:1516-1524. https://doi.org/10.1093/jnci/dji314
  76. Molpus KL, Hamblin MR, Rizvi I, Hasan T. Intraperitoneal photoimmunotherapy of ovarian carcinoma xenografts in nude mice using charged photoimmunoconjugates. Gynecol Oncol 2000;76:397-404. https://doi.org/10.1006/gyno.1999.5705
  77. Lilge L, Molpus K, Hasan T, Wilson BC. Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma. Photochem Photobiol 1998;68:281-288. https://doi.org/10.1111/j.1751-1097.1998.tb09682.x
  78. Goff BA, Blake J, Bamberg MP, Hasan T. Treatment of ovarian cancer with photodynamic therapy and immunoconjugates in a murine ovarian cancer model. Br J Cancer 1996;74:1194-1198. https://doi.org/10.1038/bjc.1996.516
  79. Molpus KL, Kato D, Hamblin MR, Lilge L, Bamberg M, Hasan T. Intraperitoneal photodynamic therapy of human epithelial ovarian carcinomatosis in a xenograft murine model. Cancer Res 1996;56:1075-1082.
  80. Perry RR, Smith PD, Evans S, Pass HI. Intravenous vs intraperitoneal sensitizer: implications for intraperitoneal photodynamic therapy. Photochem Photobiol 1991;53:335-340. https://doi.org/10.1111/j.1751-1097.1991.tb03637.x
  81. Tochner Z, Mitchell JB, Smith P, Harrington F, Glatstein E, Russo D, et al. Photodynamic therapy of ascites tumours within the peritoneal cavity. Br J Cancer 1986;53:733-736. https://doi.org/10.1038/bjc.1986.126
  82. Tochner Z, Mitchell JB, Harrington FS, Smith P, Russo DT, Russo A. Treatment of murine intraperitoneal ovarian ascitic tumor with hematoporphyrin derivative and laser light. Cancer Res 1985.45:2983-2987.
  83. Huggett MT, Jermyn M, Gillams A, Illing R, Mosse S, Novelli M, et al. Phase I/II study of verteporfin photodynamic therapy in locally advanced pancreatic cancer. Br J Cancer 2014;110:1698-1704. https://doi.org/10.1038/bjc.2014.95
  84. Bisland SK, Lilge L, Lin A, Rusnov R, Wilson BC. Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. Photochem Photobiol 2004;80:22-30. https://doi.org/10.1562/2004-03-05-RA-100.1
  85. Herrera-Ornelas L, Petrelli NJ, Mittelman A, Dougherty TJ, Boyle DG. Photodynamic therapy in patients with colorectal cancer. Cancer 1986;57:677-684. https://doi.org/10.1002/1097-0142(19860201)57:3<677::AID-CNCR2820570347>3.0.CO;2-V
  86. Hahn SM, Putt ME, Metz J, Shin DB, Rickter E, Menon C, et al. Photofrin uptake in the tumor and normal tissues of patients receiving intraperitoneal photodynamic therapy. Clin Cancer Res 2006;12:5464-5470. https://doi.org/10.1158/1078-0432.ccr-06-0953
  87. Wilson JJ, Jones H, Burock M, Smith D, Fraker DL, Metz J, et al. Patterns of recurrence in patients treated with photodynamic therapy for intraperitoneal carcinomatosis and sarcomatosis. Int J Oncol 2004;24:711-717.
  88. Hendren SK, Hahn SM, Spitz FR, Bauer TW, Rubin SC, Zhu T, et al. Phase II trial of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Ann Surg Oncol 2001;8:65-71. https://doi.org/10.1007/s10434-001-0065-x
  89. Bauer TW, Hahn SM, Spitz FR, Kachur A, Glatstein E, Fraker DL. Preliminary report of photodynamic therapy for intraperitoneal sarcomatosis. Ann Surg Oncol 2001;8:254-259. https://doi.org/10.1007/s10434-001-0254-7
  90. Wierrani F, Fiedler D, Grin W, Henry M, Dienes E, Gharehbaghi K, et al. Clinical effect of mesotetrahydroxyphenylchlorine based photodynamic therapy in recurrent carcinoma of the ovary: preliminary results. Br J Obstet Gynaecol 1997;104:376-378. https://doi.org/10.1111/j.1471-0528.1997.tb11472.x
  91. Sindelar WF, DeLaney TF, Tochner Z, Thomas GF, Dachoswki LJ, Smith PD, et al. Technique of photodynamic therapy for disseminated intraperitoneal malignant neoplasms. Phase I study. Arch Surg 1991;126:318-324. https://doi.org/10.1001/archsurg.1991.01410270062011
  92. Garza OT, Abati A, Sindelar WF, Pass HI, Hijazi YM. Cytologic effects of photodynamic therapy in body fluids. Diagn Cytopathol 1996;14:356-361. https://doi.org/10.1002/(SICI)1097-0339(199605)14:4<356::AID-DC14>3.0.CO;2-J
  93. Huang Z, Chen Q, Luck D, Beckers J, Wilson BC, Trncic N, et al. Studies of a vascular-acting photosensitizer, Pd-bacteriopheophorbide (Tookad), in normal canine prostate and spontaneous canine prostate cancer. Lasers Surg Med 2005;36:390-397. https://doi.org/10.1002/lsm.20177
  94. Krogh A, ed. The Anatomy and Physiology of Capillaries. New Haven (CT): Yale University Press, 1922.
  95. Shafirstein G, Bellnier D, Oakley E, Hamilton S, Potasek M, Beeson K, et al. Interstitial photodynamic therapy-a focused review. Cancers (Basel) 2017;9:12. https://doi.org/10.3390/cancers9020012
  96. Wilson BC, Jeeves WP, Lowe DM. In vivo and post mortem measurements of the attenuation spectra of light in mammalian tissues. Photochem Photobiol 1985;42:153-162. https://doi.org/10.1111/j.1751-1097.1985.tb01554.x
  97. Lee LK, Whitehurst C, Chen Q, Pantelides ML, Hetzel FW, Moore JV. Interstitial photodynamic therapy in the canine prostate. Br J Urol 1997;80:898-902. https://doi.org/10.1046/j.1464-410X.1997.00460.x
  98. Mroz P, Hashmi JT, Huang YY, Lange N, Hamblin MR. Stimulation of anti-tumor immunity by photodynamic therapy. Expert Rev Clin Immunol 2011;7:75-91. https://doi.org/10.1586/eci.10.81
  99. Piette J. Signalling pathway activation by photodynamic therapy: NF-κB at the crossroad between oncology and immunology. Photochem Photobiol Sci 2015;14:1510-1517. https://doi.org/10.1039/C4PP00465E
  100. Davies N, Wilson BC. Interstitial in vivo ALA-PpIX mediated metronomic photodynamic therapy (mPDT) using the CNS-1 astrocytoma with bioluminescence monitoring. Photodiagnosis Photodyn Ther 2007;4:202-212. https://doi.org/10.1016/j.pdpdt.2007.06.002
  101. Bogaards A, Varma A, Zhang K, Zach D, Bisland SK, Moriyama EH, et al. Fluorescence image-guided brain tumour resection with adjuvant metronomic photodynamic therapy: pre-clinical model and technology development. Photochem Photobiol Sci 2005;4:438-442. https://doi.org/10.1039/b414829k
  102. Hanahan D, Bergers G, Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 2000;105:1045-1047. https://doi.org/10.1172/JCI9872
  103. Liu Y, Hou G, Zhang X, Liu JJ, Zhang S, Zhang J. A pilot randomized clinical study of the additive treatment effect of photodynamic therapy in breast cancer patients with chest wall recurrence. J Breast Cancer 2014;17:161-166. https://doi.org/10.4048/jbc.2014.17.2.161
  104. Morrison SA, Hill SL, Rogers GS, Graham RA. Efficacy and safety of continuous low-irradiance photodynamic therapy in the treatment of chest wall progression of breast cancer. J Surg Res 2014;192:235-241. https://doi.org/10.1016/j.jss.2014.06.030
  105. Fujino M, Nishio Y, Ito H, Tanaka T, Li XK. 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int Immunopharmacol 2016;37:71-78. https://doi.org/10.1016/j.intimp.2015.11.034
  106. Perry RR, Evans S, Matthews W, Rizzoni W, Russo A, Pass HI. Potentiation of phototherapy cytotoxicity with light scattering media. J Surg Res 1989;46:386-390. https://doi.org/10.1016/0022-4804(89)90207-2
  107. Dedrick RL. Theoretical and experimental bases of intraperitoneal chemotherapy. Semin Oncol 1985;12:1-6.
  108. Vulcan TG, Zhu TC, Rodriguez CE, Hsi A, Fraker DL, Baas P, et al. Comparison between isotropic and nonisotropic dosimetry systems during intraperitoneal photodynamic therapy. Lasers Surg Med 2000;26:292-301. https://doi.org/10.1002/(SICI)1096-9101(2000)26:3<292::AID-LSM7>3.0.CO;2-T
  109. Azais H, Rebahi C, Baydoun M, Serouart B, Ziane L, Morales O, et al. A global approach for the development of photodynamic therapy of peritoneal metastases regardless of their origin. Photodiagnosis Photodyn Ther 2020;30:101683. https://doi.org/10.1016/j.pdpdt.2020.101683
  110. Swartling J, Hoglund OV, Hansson K, Sodersten F, Axelsson J, Lagerstedt AS. Online dosimetry for temoporfin-mediated interstitial photodynamic therapy using the canine prostate as model. J Biomed Opt 2016;21:28002. https://doi.org/10.1117/1.JBO.21.2.028002

피인용 문헌

  1. Photodynamic Therapy for the Treatment and Diagnosis of Cancer-A Review of the Current Clinical Status vol.9, 2020, https://doi.org/10.3389/fchem.2021.686303
  2. Current Status of Photodynamic Diagnosis for Gastric Tumors vol.11, pp.11, 2020, https://doi.org/10.3390/diagnostics11111967
  3. Alectinib treatment improves photodynamic therapy in cancer cell lines of different origin vol.21, pp.1, 2021, https://doi.org/10.1186/s12885-021-08667-x