DOI QR코드

DOI QR Code

전단시 온도 영향을 고려한 점성토의 왜곡 경계면 모델 개발

Distorted Bounding Surface of Clay with Consideration of the Effect of Temperature on Shearing Response

  • 우상인 (한남대학교 토목환경공학전공) ;
  • 윤찬영 (국립강릉원주대학교 토목공학과)
  • 투고 : 2020.12.13
  • 심사 : 2020.12.18
  • 발행 : 2020.12.31

초록

본 연구는 온도에 따른 점성토의 전단 변형의 특성의 모사에 초점을 맞춘다. 일반적으로 온도가 상승할수록 정규압밀선은 간극비와 평균유효응력의 평면에서 하향 이동한다. 하지만 한계상태선은 온도변화에 따라 정규압밀선만큼 이동하지는 않는다. 따라서, 온도가 증가할수록, 한계상태 평균유효응력과 선행압밀 평균유효응력의 차이는 감소한다. 이를 반영하기 위해, 본 연구에서는 한계상태 평균유효응력을 기준으로 두 부분으로 나뉘어진 경계면을 적용하였다. 또한 Bangkok 점성토에 대해서 경계면을 구축하고, 비배수 삼축압축시험에 대해서 요소해석을 실시하였다. 요소해석 결과, 제안된 모델은 복잡한 강성 혹은 발달 법칙 없이 실험 데이터와 유사한 점성토의 온도에 따른 역학적 거동을 잘 모사하였다.

The present research focuses on a methodology to describe shearing response of clay with respect to temperature. An increase of temperature shifts the normal consolidation line to move down in the plane of void ratio and mean effective stress. The critical state line, however, does not move as much as the normal consolidation line in accordance with temperature increase. As temperature increase, therefore, the difference between the critical state mean effective stress and the pre-consolidation pressure reduces. To reflect this easily, the present study applies a bounding surface consisting of two parts divided by the critical state mean effective stress. This study calibrated a bounding surface for the soft Bangkok clay and performed elemental simulation for undrained triaxial compression tests. The elemental simulation showed that the model can describe the mechanical response upon temperature of clay without complex hardening and evolution rules compared to the experimental data.

키워드

참고문헌

  1. Abuel-Naga, H. M., Bergado, D. T., and Lim, B. F. (2007), "Effect of Temperature on Shear Strength and Yielding Behavior of Soft Bangkok Clay", Soils and Foundations, Vol.47, No.3, pp.423-436. https://doi.org/10.3208/sandf.47.423
  2. Brochard, L., Honório, T., Vandamme, M., Bornert, M., and Peigney, M. (2017), "Nanoscale Origin of the Thermo-mechanical behavior of Clays", Acta Geotechnica, Vol.12, No.6, pp.1261-1279. https://doi.org/10.1007/s11440-017-0596-3
  3. Chakraborty, T., Salgado, R., and Loukidis, D. (2013), "A Two-surface Plasticity Model for Clay", Computers and Geotechnics, Vol.49, pp.170-190. https://doi.org/10.1016/j.compgeo.2012.10.011
  4. Graham, J., Tanaka, N., Crilly, T., and Alfaro, M. (2001), "Modified Cam-Clay Modelling of Temperature Effects in Clays", Canadian Geotechnical Journal, Vol.38, No.3, pp.608-621. https://doi.org/10.1139/t00-125
  5. Hamidi, A., Tourchi, S., and Khazaei, C. (2014), "Thermomechanical Constitutive Model for Saturated Clays Based on Critical State Theory", International Journal of Geomechanics, Vol.15, No.1, 04014038. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000402
  6. Neaupane, K. M., Nanakorn, P., Sirayapivat, O., and Kanborirak, S. (2005), "Effects of Temperature on 1-D Consolidation Characteristics of Clayey Soil", 16th International Conference on Soil Mechanics and Geotechnical Engineering, pp.417-420.
  7. Plum, R. L. and Esrig, M. I. (1969), "Some Temperature Effects on Soil Compressibility and Pore Water Pressures", Highway Research Board Special Report, Vol.103, No.10, pp.231-242.
  8. Sultan, N., Delage, P., and Cui, Y. J. (2002), "Temperature Effects on the Volume Change behaviour of Boom Clay", Engineering Geology, Vol.64, No.2-3, pp.135-145. https://doi.org/10.1016/S0013-7952(01)00143-0
  9. Wang, L. Z., Wang, K. J., and Hong, Y. (2016), "Modeling Temperature-Dependent Behavior of Soft Clay", Journal of Engineering Mechanics, Vol.142, No.8, 04016054. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001108
  10. Woo, S. I. and Salgado, R. (2015), "Bounding Surface Modeling of Sand with Consideration of Fabric and Its Evolution during Monotonic Shearing", International Journal of Solids and Structures, Vol.63, pp.227-288.
  11. Woo, S. I., Seo, H., and Kim, J. (2017), "Critical-state-based Mohr-Coulomb Plasticity Model for Sands", Computers and Geotechnics, Vol.92, pp.179-185. https://doi.org/10.1016/j.compgeo.2017.08.001