DOI QR코드

DOI QR Code

Biot 파동전파 이론을 이용한 지반의 투수계수 산정

Estimation of Hydraulic Conductivity of Soils Based on Biot's Theory of Wave Propagation

  • 투고 : 2020.05.22
  • 심사 : 2020.09.10
  • 발행 : 2020.12.31

초록

본 연구는 음향학적 기법을 이용하여 지반의 투수계수를 산정하는 새로운 방법을 제시하였다. 연구를 위하여 Biot의 특성 진동수(Characteristic Frequency) 와 지반의 투수계수의 연관성이 포화된 지반에서만 나타나는 것을 확인할 수 있도록 음파의 감쇠 및 전파속도 특성을 포화된 시료와 건조된 시료에 대하여 측정/비교 하였다. 본 연구에서의 시험결과는 특성 진동수는 포화된 지반에서만 나타나며, 음파의 감쇠 특성으로 부터 얻은 특성 진동수와 전파속도 특성으로 부터 얻은 특성 진동수가 서로 매우 유사한 범위를 나타내었다. 한편 음파의 전파속도로 부터 얻은 결과가 감쇠 특성으로부터 얻은 결과보다 판독성이 좀 더 좋은 것으로 나타났다. 또한 본 시험결과를 동일한 시료에 대한 정수위 투수시험결과와 비교했을때 서로가 합리적으로 상응하는 결과를 나타내었으며, 본 연구에서 사용된 음향학적 기법이 사질토 또는 실트질 사질토의 투수계수를 구할 수 있는 비파괴 시험으로 사용될 수 있는 가능성을 보여 주었다.

This study presents an acoustic technique to estimate the hydraulic conductivity of soils. Acoustic attenuation and propagation velocity spectra were measured for dry and saturated sandy specimens to confirm that the relationship between Biot's characteristic frequency and its associated hydraulic conductivity exists only for saturated soils. From the experiments presented in this paper, both attenuation-based and propagation-velocity-based techniques resulted in almost identical characteristic frequencies for saturated soils. The propagation velocity based measurements, however, show a a a slightly clearer trend compared to the attenuation based measurements. The results also show that the acoustically estimated hydraulic conductivities of soils agree well with constant head laboratory test results, demonstrating that this acoustic technique can be a useful nondestructive tool to estimate the hydraulic conductivity of sandy or silty soils.

키워드

참고문헌

  1. Biot, M. A. (1956a), "Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Rock: I. Low Frequency Range", J. Acoust. Soc. Am., Vol.28, No.2, pp.168-178. https://doi.org/10.1121/1.1908239
  2. Biot, M. A. (1956b), "Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Rock: II. Higher Frequency Range", J. Acoust. Soc. Am., Vol.28, No.2, pp.179-191. https://doi.org/10.1121/1.1908241
  3. Biot, M. A. (1962), "General Theory of Acoustic Propagation in Porous Dissipative Media", J. Acoust. Soc. Am., Vol.34, No.9A, pp.1254-1264. https://doi.org/10.1121/1.1918315
  4. Block, G. I. (2004), "Coupled acoustic and electromagnetic disturbances in a granular material saturated by a fluid electrolyte", Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, Illinois, pp.1-160
  5. Buckingham, M. J. (2004), "A Three-parameter Dispersion Relationship for Biot's Fast Compressional Wave in a Marine Sediment", J. Acoust. Soc. Am., Vol.116, No.2, pp.769-776. https://doi.org/10.1121/1.1646672
  6. Chalermyanont, T. and Arrykul, S. (2005), "Compacted Sand-bentonite Mixtures for Hydraulic Containment Liners", Songklanakarin J. Sci. Technol., Vol.27, No.2, pp.313-323.
  7. Diallo, M. S., Prasad, M., and Appel, E. (2003), "Comparison between Experimental Results and Theoretical Predictions for P - Wave Velocity and Attenuation at Ultrasonic Frequency", Wave motion, Vol.37, No.1, pp.1-16. https://doi.org/10.1016/S0165-2125(02)00018-5
  8. Dvorkin, J. and Nur, A. (1993), "Dynamic Poroelasticity : A Unified Model with the Squirt and the Biot Mechanisms", Geophysics, Vol.58, No.4, pp.524-533. https://doi.org/10.1190/1.1443435
  9. Dvorkin, J., Nolen-Hoeksema R., and Nur, A. (1994), "The Squirtflow Mechanism: Macroscopic Description", Geophysics, Vol.59, No.3, pp.428-438. https://doi.org/10.1190/1.1443605
  10. Dvorkin, J., Mavko, G., and Nur, A. (1995), "Squirt Flow in Fully Saturated Rocks", Geophysics, Vol.60, No.1, pp.97-107. https://doi.org/10.1190/1.1443767
  11. Emerson, M. and Foray, P. (2006), "Laboratory P-wave Measurements in Dry and Saturated Sand", Acta Geotechnica, Vol.1, No.3, pp.167-177. https://doi.org/10.1007/s11440-006-0015-7
  12. Fratta, D. and Santamarina, J. C. (1996), "Wave Propagation in Soils: Multi-mode, Wide-band Testing in a Waveguide Device", Geotech. Testing J., ASTM, Vol.19, No.2, pp.130-140. https://doi.org/10.1520/GTJ10336J
  13. Hamdi, F. and Smith, D. T. (1982), "The Influence of Permeability on Compressional Wave Velocity in Marine Sediments", Geophysical Prospecting, Vol.30, No.5, pp.622-640. https://doi.org/10.1111/j.1365-2478.1982.tb01330.x
  14. Hamilton, E. L. (1972), "Compressional Wave Attenuation in Marine Sediments", Geophysics, Vol.37, No.4, pp.620-646. https://doi.org/10.1190/1.1440287
  15. Haarten, M. W. (1995), Coupled Electromagnetic and Acoustic Wavefield Modeling in Poro-Elastic Media and its Applications in Geophysical Exploration, Ph. D. Dissertation, MIT, pp.1-325
  16. Hickey, C. J. and Sabatier, J. M. (1997), "Measurement of Two Types of Dilatational Waves in an Air-filled Unconsolidated Sand", J. Acoust. Soc. Am., Vol.102, No.1, pp.128-136. https://doi.org/10.1121/1.419770
  17. Hughes, E. R., Leighton, T. G., Petley, G. W., White, P. R., and Chivers, R. C. (2003), "Estimation of Critical and Viscous Frequencies for Biot Theory in Cancellous Bone", Ultrasonics, Vol.41, No.5, pp.356-368.
  18. Johnson, D. L., Koplik, J., and Dashen, R. (1987), "Theory of Dynamic Permeability and Tortuosity in Fluid-saturated Porous Media", J. Fluid Mech, Vol.176, pp.379-402. https://doi.org/10.1017/S0022112087000727
  19. Johnston, D. H., Toksoz, M. N., and Timur, A. (1979), "Attenuation of Seismic Waves in Dry and Saturated Rocks: II. Mechanisms", Geophysics, Vol.44, No.4, pp.691-711. https://doi.org/10.1190/1.1440970
  20. Jones, T. D. (1986), "Pore Fluids and Frequency-dependent Wave Propagation in Rocks", Geophysics, Vol.51, No.10, pp.1939-1953. https://doi.org/10.1190/1.1442050
  21. Kim, J. (2010), "Estimation of hydraulic conductivity based on HK (Hydro-Kinetic) and EHK (Electro-Hydro-Kinetic) coupled mechanisms", Ph. D. Dissertation, Dept. of Civil Engineering, University of Mississippi, 197p.
  22. Lee, K. I., Humphrey, V. F., Kim, B. N., and Yoon, S. W. (2007), "Frequency Dependencies of Phase Velocity and Attenuation Coefficient in a Water-saturated Sandy Sediment from 0.3 to 1.0 MHz", J. Acoust. Soc. Am., Vol.121, No.5, pp.2553-2558. https://doi.org/10.1121/1.2713690
  23. Lopatnikov, S. L. and Cheng, A. H.-D. (2004), "Macroscopic Lagrangian Formulation of Poroelasticity with Porosity Dynamics", J. of Mec. and Phys. of Solids, Vol.52, No.12, pp.2801-2839. https://doi.org/10.1016/j.jmps.2004.05.005
  24. Lu, Z., Hickey, C. J., and Sabatier, J. M. (2004), "Effects of Compaction on the Acoustic Velocity in Soils", Soil Sci. Soc. Am. J., Vol.68, pp.7-16. https://doi.org/10.2136/sssaj2004.0007
  25. Nolle, A. W., Hoyer, W. A., Mifsud, J. F., Runyan, W. R., and Ward, M. B. (1963), "Acoustic properties of water-filled sand", J. Acoust. Soc. Am., Vol.42, No.4, pp.1394-1408.
  26. Prasad, M. and Meissner, R. (1992), "Attenuation Mechanisms in Sands: Laboratory Versus Theoretical (Biot) data", Geophysics, Vol.57, No.5, pp.710-719. https://doi.org/10.1190/1.1443284
  27. Pride, S. R. and Berryman, J. G. (2003), "Linear Dynamics of Double-porosity Dual Permeability Materials. Ι. Governing Equations and Acoustic Attenuation", Phys. Rev. E., Vol.68, No.3, pp.036603-1-036603-10. https://doi.org/10.1103/physreve.68.036603
  28. Raji, W. and Rietbrock, A. (2013), "Attenuation (1/Q) Estimation in Reflection Seismic Records", J. of Geophysics and Engineering, Vol.10, No.4, https://doi.org/10.1088/1742-2132/10/4/045012
  29. Rosenblad, B., Li, J., Stokoe, II, K.H., Wilder, B., and Menq, F.-Y. (2008), "Deep Shear Wave Velocity Profiling of Poorly Characterized Soils Using the NEES Low-Frequency Vibrator", Geotechnical Earthquake Engineering and Soil Dynamics IV (GEESD IV), Sacramento, CA, May. ASCE, doi/abs/10.1061/40975(318)57
  30. Santamarina, J. C. (in collaboration with Klein, K.A. and Fam. M.A.) (2001). Soils and Waves, John Wiley & Sons, Inc, New York, 488p.
  31. Song, C. R., Kim, J. W., and Cheng, A. H.-D (2008), "Estimation of Soil Permeability Using an Acoustic Technique", J. Geotech. and Geoenv. Engr., ASCE, Vol.134, No.12, pp.1829-1832. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:12(1829)
  32. Stoll, R. D. (2002), "Velocity Dispersion in Water-saturated Granular Sediment", J. Acoust. Soc. Am., Vol.111, No.2, pp.785-793. https://doi.org/10.1121/1.1432981
  33. Velea, D., Shields, D. F., and Sabatier, J. M. (2000), "Elastic Wave Velocities in Partially Saturated Ottawa Sand: Experimental Results and Modeling", Soil Sci. Soc. Am. J., Vol.64, pp.1226-1234. https://doi.org/10.2136/sssaj2000.6441226x
  34. Wei, C. and Muraleetharan, K. K. (2006), "Acoustical Characterization of Fluid-saturated Porous Media with Local Heterogeneities: Theory and Application", Int. J. of Solids and Structures, Vol.43, No.5, pp.982-1008. https://doi.org/10.1016/j.ijsolstr.2005.06.008
  35. Williams, K. L., Jackson, D. R., Thorsos, E. I., Tang, D., and Schock, S. G. (2002), "Comparison of Sound Speed and Attenuation Measured in a Sandy Sediment to Predictions based on the Biot Theory of Porous Media", IEEE J. Ocean. Eng., Vol.27, No.3, pp.413-428. https://doi.org/10.1109/JOE.2002.1040928
  36. Yamamoto, R. (2003), "Imaging Permeability Structure Within the Highly Permeable Carbonate Earth: Inverse Theory and Experiment", Geophysics, Vol.68, No.4, pp.1189-1201. https://doi.org/10.1190/1.1598103
  37. Zimmer, M. A., Prasad, M., Mavko, G., and Nur, A. (2007a), "Seismic Velocities of Unconsolidated Sands: Part 1. Pressure Trends from 0.1 to 20 MPa", Geophysics, Vol.72, No.1, pp.E1-E13. https://doi.org/10.1190/1.2399459
  38. Zimmer, M. A., Prasad, M., Mavko, G., and Nur, A. (2007b), "Seismic Velocities of Unconsolidated Sands: Part 2. Influence of Sorting-and Compaction-induced Porosity Variation", Geophysics, Vol.72, No.2, pp.E15-E25. https://doi.org/10.1190/1.2364849