DOI QR코드

DOI QR Code

단풍잎돼지풀 발효 추출물의 항산화 효과 및 B16F10 세포에서의 미백 활성 검증

Verification of the Antioxidant Effects and Whitening Activity of fermented Ambrosia trifida L. Extracts in B16F10 Cells

  • 유단희 (호서대학교 화장품생명공학부) ;
  • 오민정 (호서대학교 화장품생명공학부) ;
  • 염현지 (호서대학교 화장품생명공학부) ;
  • 이진영 (호서대학교 화장품생명공학부)
  • Yoo, Dan-Hee (Division of Cosmetics Biotechnology, Hoseo University) ;
  • Oh, Min-Jeong (Division of Cosmetics Biotechnology, Hoseo University) ;
  • Yeom, Hyeon-Ji (Division of Cosmetics Biotechnology, Hoseo University) ;
  • Lee, Jin-Young (Division of Cosmetics Biotechnology, Hoseo University)
  • 투고 : 2020.06.09
  • 심사 : 2020.09.07
  • 발행 : 2020.12.28

초록

본 연구는 단풍잎돼지풀 발효 추출물의 항산화 및 미백 효과를 검증하여 화장품 소재로서 활용가능성을 확인하고자 하였다. 항산화 효과를 측정하기 위해 전자공여능 측정과 ABTS 라디칼 소거능을 측정하였다. 단풍잎돼지풀 발효 추출물의 전자공여능 측정 결과 1,000 ㎍/ml 농도에서 68.4%의 효과를 보였으며, ABTS 라디칼 소거능 측정 결과 같은 농도에서 58.7%의 효과를 나타내었다. 미백효과를 Tyrosinase의 효소 억제 활성에 의해 측정한 결과, 1,000 ㎍/ml 농도에서 32.4%의 저해활성 효과를 보였다. 세포 차원에서 미백효과를 측정하기 위해 단풍잎돼지풀 발효추출물의 세포 생존율을 멜라노마 세포에서 측정하였다. 그 결과, 100 ㎍/ml 농도에서 85.2%의 생존율을 보였으며, 독성을 보이지 않는 농도인 100 ㎍/ml 농도 이하에서 western blot을 진행하였다. 단풍잎돼지풀 발효 추출물의 단백질 발현억제 효과를 25, 50, 100 ㎍/ml의 농도에서 western blot으로 측정하였으며, 양성대조군으로 β-actin을 사용하였다. 그 결과, 100 ㎍/ml 농도에서 MITF, TRP-1, TRP-2, Tyrosinase인자들은 각각 51.14%, 55.4%, 38.6%, 83.77%의 효과를 나타내었다. 결론적으로 단풍잎돼지풀 발효 추출물의 항산화 및 미백효과가 검증되었으며, 화장품 천연물 소재로서 활용가능성을 확인하였다.

The purpose of this study was to verify the antioxidant and whitening effects of fermented Ambrosia trifida L. extract (ATFE) and to verify its usefulness as a cosmetic material. The antioxidant effects were measured by assessing the electron-donating capacity and 2,2-azino-bis(3-ethyl-benthiazoline-6-sulfonic acid) (ABTS) radical scavenging ability of these extracts. ATFE was shown to have an electron-donation capacity of 68.4% at a concentration of 1000 ㎍/ml. While its ABTS+ radical scavenging ability was shown to be 58.7% at the same concentration. The ATFE tyrosinase inhibitory effect, which is related to skin-whitening, was shown to be 32.35% at a concentration of 1000 ㎍/ml and a cell viability assay using melanoma cells showed a 14.8% reduction in cell viability at a concentration of 100 ㎍/ml. Surviving cells were then used in western blot analyses to evaluate the protein inhibitory effects of ATFE at 25, 50, 100 ㎍/ml where β-actin was used as a positive control. The whitening effects of these extracts were also evaluated by western blot and show that the expression of microphthalmia-associated transcription factors, Tyrosinase-related proteins (TRP)-1, TRP-2 and Tyrosinase were all inhibited, 51.14%, 55.4%, 38.6%, 83.77% respectively, at 100 ㎍/ml ATFE. The efficacy of the whitening effects was verified and the suitability of ATFE as a cosmetic material was assured.

키워드

참고문헌

  1. Park KM, Yoo JH, Shin YJ. 2009. Effects of egg shell membrane hydrolysates on skin whitening, wound healing, and UV-protection. Korean J. Food Sci. Ani. Resour. 32: 308-315. https://doi.org/10.5851/kosfa.2012.32.3.308
  2. Tasi TC, Hantash BM. 2008. Cosmeceutical agents: A comprehensive review of the literayure. Clin. Med. Dermatol. 27: 1-20.
  3. Fisher GJ, Wang ZQ, Datta SC, Varani J, Kang S, Voorhees JJ. 1997. Pathophysiology of premature skin aging induced by ultraviolet light. N. Engl. J. Med. 337: 1419-1428. https://doi.org/10.1056/NEJM199711133372003
  4. KDA Textbook Editiong Board. 2008. Dermatology. pp. 348-349. 5th Ed. Ryo Moon Gak, Korea.
  5. Maeda K, Fukuda M. 1991. In vitro effectiveness of several whitening cosmetic components in human melanocytes. J. Soc. Cos. Chem. 42: 361-368.
  6. Smit N, Vicanova J, Pavel S. 2009. The hunt for natural skin whitening agents. Int. J. Mol. Sci. 10: 5326-5349. https://doi.org/10.3390/ijms10125326
  7. Del Bino S, Duval C, Bernerd F. 2018. Clinical and biological characterization of skin pigmentation diversity and its consequences on UV impact. Int. J. Mol. Sci. 19: 2668-2712. https://doi.org/10.3390/ijms19092668
  8. Ando H, Niki Y, Ito M, Akiyama K, Matsui MS, Yarosh DB, et al. 2012. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. J. Invest. Dermatol. 132: 1222-1229. https://doi.org/10.1038/jid.2011.413
  9. Seiberg M. 2001. Keratinocyte-melanocyte interation during melanosome transfer. Pigment Cell Res. 14: 236-242. https://doi.org/10.1034/j.1600-0749.2001.140402.x
  10. Gilchrest BA, Eller MS. 1999. DNA photodamage stimulates melanogenesis and other photoprotective responses. J. Investig. Dermatol. Symp. Proc. 4: 35-40. https://doi.org/10.1038/sj.jidsp.5640178
  11. Oh MC, Kim KC, Ko CI, Ahn YS, Hyun JW. 2015. Peptides-derived from scales of branchiostegus japonicus inhibit ultraviolet B-induced oxidative damage and photo-aging in skin cells. J. Life Sci. 25: 269-275. https://doi.org/10.5352/JLS.2015.25.3.269
  12. Tadokoro T, Kobayashi N, Zmudzka BZ, Ito S, Wakamatsu K, Yamaguchi Y, et al. 2003. UV-induced DNA damage and melanin content in human skin differing in racial/ethnic origin. FASEB J. 17: 1177-1179. https://doi.org/10.1096/fj.02-0865fje
  13. Huang YH, Lee TH, Chan KJ, Hsu FL, Wu YC, Lee MH. 2008. Anemonin is a natural bioactive compound that can regulate tyrosinase-related proteins and mRNA in human melanocytes. J. Dermatol. Sci. 49: 115-123. https://doi.org/10.1016/j.jdermsci.2007.07.008
  14. Hunt G, Todd C, Cresswell JE, Thody AT. 1994. Alpha-melanocyte stimulating hormone and its analogue Nle4DPhe7 alpha-MSH affect morphology, tyrosinase activity and melanogenesis in cultured human melanocytes. J. Cell Sci. 107: 205-216.
  15. Kim JM, Lim YJ, Jeon ES. 2000. Naturalized Plants of Korea. Science Books, Korea.
  16. Luken JO, Thiert JW. 1996. Assessment and Management of Plant Invasion. Springer, New York, USA.
  17. Yang HS, Kim DS, Park SH. 2004. Weed form, physiology, ecology II, pp. 401-403. Previous Agricultural Resources Book, Korea.
  18. Lee CB. 2003. Original Color of Korean Plants. pp. 382. Hyangmunsa, Korea.
  19. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, et al. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695-1699. https://doi.org/10.1093/jn/130.7.1695
  20. Lee TS. 1990. The full list of recoded mushroom in korea. Korean J. Mycol. 18: 233-259.
  21. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 26: 1199-1120. https://doi.org/10.1038/1811199a0
  22. Roberta R, Nicoletta P, Anna P, Ananth P, Min Y, Catherine RE. 1999. Antioxidant acitivity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  23. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. 1987. Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936-942.
  24. Yu MH, Im HG, Lee HJ, Ji YJ, Lee IS. 2006. Components and their antioxidative activities of methanol extracts from sarcocarp and seed of Zizyphus jujuba var. inermis Rehder. Korean J. Food Sci. Technol. 38: 128-134.
  25. Cha JY, Ahn HY, Eom KE, Park BK, Jun BS, Cho YS. 2009. Antioxidative activity of Aralia elata shoot and leaf extracts. J. Life Sci. 19: 652-658. https://doi.org/10.5352/JLS.2009.19.5.652
  26. Kim YE, Yang JW, Lee CH, Kwon EK. 2009. ABTS radical scavenging and anti-tumor effects of Tricholoma matsutake Sing. (Pine Mushroom). J. Korean Soc. Food Sci. Nutr. 38: 555-560. https://doi.org/10.3746/JKFN.2009.38.5.555
  27. Park SJ. 2014. Antioxidant and anti-adipogenic effects of ethanolic extracts from Ixeris dentata Nakai. Korean J. Culinary Res. 20: 133-142.
  28. Jung SW, Lee NK, Kim SJ, Han DS. 1995. Screening of tyrosinase inhibitor from plants. Korean J. Food Sci. Technol. 27: 891-896.
  29. Sim GS, Kim JH, Lee BC, Lee DH, Lee GS, Pyo HB. 2008. Inhibitory effects on melanin production in B16 melanoma cells of Sedum sarmentosum. Yakhak Hoeji 52: 165-171.
  30. Imokawa G, Mishima Y. 1981. Biochemical characterization of tyrosinase inhibitors using tyrosinase binding affinity chromatography. Br. J. Dermatol. 104: 513-539.
  31. Jeon HS, Lee YS, Kim NW. 2009. The antioxidative activities Torreya nucifera seed extracts. J. Korean Soc. Food Sci. Nutr. 38: 1-8. https://doi.org/10.3746/JKFN.2009.38.1.001
  32. Ukeda H, Maeda S, Ishii T, Sawamura M. 1997. Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3'-1-(phenylamino)-carbonyl-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. Anal. Biochem. 251: 206-209. https://doi.org/10.1006/abio.1997.2273
  33. An BJ, Lee CE, Son JH, Lee JY, Park TS, Park JM, et al. 2005. Antioxidant, anticancer and antibacterial activities of Naesohwangryntang and its ingredients. Korean J. Herbol. 20: 17-26.
  34. Hearing VJ, Tsukamoto K. 1991. Enzymatic control of pigmentation in mammals. FASEB J. 5: 2902-2909. https://doi.org/10.1096/fasebj.5.14.1752358
  35. Pilawa B, Buszman E, Latocha M, Wilczok T. 2004. Free radical in DOPA-melanin-chloroquine complexes. Pol. J. Med. Phys. Eng. 10: 35-42.
  36. Kim DS, Hwang ES, Lee JE, Kim SY, Kwon SB, Park KC. 2003. Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and sub-sequent MITF degradation. J. Cell Sci. 116: 1699-1706. https://doi.org/10.1242/jcs.00366