DOI QR코드

DOI QR Code

Streptococcus zooepidemicus 유래 히알루론산의 경제적 생산을 위한 연속배양 공정 개발

Development of Continuous Culture Process for Economic Production of Hyaluronic Acid (HA) Biosynthesized by Streptococcus zooepidemicus

  • 김수연 (강원대학교 의생명과학대학) ;
  • 전계택 (강원대학교 의생명과학대학)
  • Kim, Soo Yeon (College of Biomedical Science, Kangwon National University) ;
  • Chun, Gie-Taek (College of Biomedical Science, Kangwon National University)
  • 투고 : 2020.08.19
  • 심사 : 2020.09.07
  • 발행 : 2020.12.28

초록

본 연구에서는 히아루론산(Hyaluronic acid) (HA)의 시간당 부피생산성(g/l/h)을 증가시키기 위해, 이전의 회분식 배양결과를 바탕으로 S. zooepidemicus를 이용한 연속식 배양공정을 개발하고자 하였다. 약 8시간까지 회분식으로 발효조를 운영한 후, 0.029/h의 희석속도(D1)로 48시간까지 1단계 연속배양을, 그 후 약 96시간까지 0.036/h의 희석속도(D2)로 최종 2단계 연속배양을 수행하였다. 회분식 배양 말기에 HA의 생산량은 3.85 g/l이었으며, 1단계 연속배양 기간 동안에는 7.5-10 g/l(건조 HA인 경우는 13.39-14.2 g/l)의 농도로 생산되었다. 계속된 2단계 연속배양에서는, 희석속도의 증가로 인해, 초반에 잠시 HA 생산성이 8.28 g/l (건조 HA인 경우는 11.63 g/l)까지 감소하다가, 서서히 증가하면서 다시 새로운 정상상태로 접근해 가는 현상을 관찰할 수 있었다. 2단계 연속배양에서의 HA 생산량은 약 8.28-9.48 g/l (건조 HA의 경우는 11.0-13.37 g/l) (1단계 연속배양 대비 약 4.7% 소량 감소)로서, 배양 종료까지 비교적 안정적으로 유지되는 것으로 나타났다. 그렇지만 HA의 부피생산성(DP)(= 희석속도 × HA 생산농도)(g/l/h)은 희석속도를 D1에서 D2로 약 24% 증가시킨 결과. 2단계 기간인 배양 약 96시간 경에 최대 0.341 g/l/h에 이르는 것으로 관찰되었는데, 이는 대조군으로 수행한 회분식 배양의 평균 부피생산성(0.331 g/l/h)에 비해 3% 가량 소량 증가된 수치이다. 하지만, 연속배양 공정의 경우, 회분식 배양에서는 반드시 요구되는 다단계의 성장배양 단계를 진행하지 않고도, 최종 생산배양 공정만을 연속적으로 수행할 수 있으므로, 회분식 배양공정의 전체 배양시간(즉 다단계 성장발효조 배양 기간 + 최종 생산발효조 배양 기간)을 기준으로 비교한다면, 연속배양의 HA의 부피생산성이 회분식배양 대비 큰 폭으로 향상될 수 있을 것으로 판단된다. 한편 본 연속배양 연구에서 사용한 생산배지는 회분식 배양에서 생산균주의 배양생리적 특성에 맞추어서 최적화된 배지임을 고려할 때, 연속배양 공정에 적용될 수 있는 최적배지가 개발된다면, 장기간 생산 안정성을 유지하면서 동시에 부피생산성도 증가하는, 경제적인 연속배양 공정이 개발될 수 있을 것으로 기대된다.

A continuous fermentation process was carried out to enhance hyaluronic acid (HA) production using Streptococcus zooepidemicus cells. During the 1st stage continuous operation from 8 h with a dilution rate of 0.029/h (D1), HA was produced in the range of 7.5-10 g/l. During the 2nd stage from 44 h with a dilution rate of 0.036/h (D2), HA production (8.28 g/l) was initially reduced to a small extent due to increase of dilution rate from D1 to D2, and then a new pseudo-steady state was formed within a few hours with a concurrent small variations of HA production. The HA amount produced during the latter part of the 2nd stage was stably maintained in the range of 8.28-9.48 g/l, about 4.7% less amount compared to the 1st stage. Due to 24% increase of dilution rate from D1 to D2, however, maximum volumetric productivity (DP) amounting to 0.341 g/l/h was obtained at 96 h during the 2nd stage. This maximum productivity obtained from the continuous culture turned out only a small increase (3%) as compared to the corresponding batch fermentation. However, it should be noted that, in the case of batch process, one run typically consists of serial stages of growth culture plus one final production culture. This implies that, if the continuous fermentation that practically needs no dead time necessary for the multi-stage growth cultures is run for longer period, the total amount of the accumulated HA would be far greater than the amount obtained from the corresponding batch culture performed for the identical period.

키워드

참고문헌

  1. Kogan G, Soltes L, Stern R, Gemeiner P. 2007. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29: 17-25. https://doi.org/10.1007/s10529-006-9219-z
  2. Schante CE, Zuber G, Herlin C, Vandamme TF. 2011. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr. Polym. 85: 469-489. https://doi.org/10.1016/j.carbpol.2011.03.019
  3. Kim KH, Kim KT, Kim YH, Kim JG, Han CS, Park SH, Lee BY. 2007. Preparation of oligo hyaluronic acid by hydrolysis and its application as a cosmetic ingredient. J. Soc. Cosmet. Sci. Korea 33: 189-196.
  4. Liu L, Liu Y, Li J, Du G, Chen J. 2011. Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb. Cell Fact. 10: 99. https://doi.org/10.1186/1475-2859-10-99
  5. Schiraldi C, La Gatta A, De Rosa M. 2010. Biotechnological production and application of hyaluronan. Biopolymers. 20: 387-412.
  6. Kim SJ, Park SY, Kim CW. 2006. A novel approach to the production of hyaluronic acid by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 16: 1849-1855.
  7. Duan XJ, Niu HX, Tan WS, Zhang X. 2009. Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus.J. Microbiol. Biotechnol. 19: 299-306. https://doi.org/10.4014/jmb.0801.073
  8. Duan XJ, Yang L, Zhang X, Tan WS. 2008. Effect of oxygen and shear stress on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. J. Microbiol. Biotechnol. 18: 718-724.
  9. Zhang X, Duan XJ, Tan WS. 2010. Mechanism for the effect of agitation on the molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus. Food Chem. 119: 1643-1646. https://doi.org/10.1016/j.foodchem.2009.09.014
  10. Pedersen MB, Gaudu P, Lechardeur D, Petit MA, Gruss A. 2012. Aerobic respiration metabolism in lactic acid bacteria and uses in biotechnology. Annu. Rev. Food Sci. Technol. 3: 37-58. https://doi.org/10.1146/annurev-food-022811-101255
  11. Cleary PP, Larkin ANNICE. 1979. Hyaluronic acid capsule: strategy for oxygen resistance in group A streptococci. J. Bacteriol. 140: 1090-1097. https://doi.org/10.1128/jb.140.3.1090-1097.1979
  12. Condon S. 1987. Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 3: 269-280. https://doi.org/10.1111/j.1574-6968.1987.tb02465.x
  13. Kim SY. 2015. Strain Improvement and Bioprocess Optimization for Industrial Production of Hyaluronic Acid. M.S. Kangwon National University. Republic of Korea.
  14. Herbert D, Elsworth R, Telling RC. 1956. The continuous culture of bacteria; a theoretical and experimental study. Microbiology 14: 601-622.
  15. Blank LM, McLaughlin RL, Nielsen LK. 2005. Stable production of hyaluronic acid in Streptococcus zooepidemicus chemostats operated at high dilution rate. Biotechnol. Bioeng. 90: 685-693. https://doi.org/10.1002/bit.20466
  16. 張利燮, 鄭敎民. 1987. Chemostat Culture 에서의 Hyaluronic Acid 生産에 關한 硏究. KSBB J. 1: 25-28.
  17. Ellwood DC, Evans CGT, Dunn GM, McInnes N, Yeo RG, Smith KJ, 1995. Fermentech Medical Ltd., Edinburgh, UK, assignee. Production of hyaluronic acid. US Patent 5,411,874.
  18. Stahl, S. 2003. U.S. Patent No. 6,537,795. Washington, DC: U.S. Patent and Trademark Office.
  19. Bitter T. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-334. https://doi.org/10.1016/0003-2697(62)90095-7
  20. Chen SJ, Chen JL, Huang WC, Chen HL. 2009. Fermentation process development for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. Korean J. Chem. Eng. 26: 428-432. https://doi.org/10.1007/s11814-009-0072-3
  21. Shah MV, Badle SS, Ramachandran KB. 2013. Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynthesis pathway. Biochem. Eng. J. 80: 53-60. https://doi.org/10.1016/j.bej.2013.09.013