Acknowledgement
This study was supported by "Ministry of Higher Education and Scientific research of Morocco".
References
- Patel MT, Nagarajan R, Kilara A. 1996. Lipase-catalyzed biochemical reactions in novel media: A review. Chem. Eng. Commun. 152 : 365-404. https://doi.org/10.1080/00986449608936574
- Reis P, Holmberg K, Watzke H, Leser ME, Miller R. 2009. Lipases at interfaces: a review. Adv. Colloid Interf. Sci. 147: 237-250. https://doi.org/10.1016/j.cis.2008.06.001
- Pahoja VM, Sethar MA. 2002. A review of enzymatic properties of lipase in plants, animals and microorganisms. J. Appl. Sci. 2: 474-484. https://doi.org/10.3923/jas.2002.474.484
- Agobo KU, Arazu VA, Uzo K, Igwe CN. 2017. Microbial lipases: a prospect for biotechnological industrial catalysis for green products: a review. J. Ferment. Technol. 6: 1-12.
- Thakur S. 2012. Lipases, its sources, properties and applications: a review. Int. J. Sci. Eng. Res. 3: 1-29.
- Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV. 2010. A review on microbial lipases production. Food. Bioprocess. Tech. 3: 182-196. https://doi.org/10.1007/s11947-009-0202-2
- Ji X, Chen G, Zhang Q, Lin L, Wei Y. 2015. Purification and characterization of an extracellular cold-adapted alkaline lipase produced by psychrotrophic bacterium Yersinia enterocolitica strain KM1. J. Basic. Microbial. 55: 718-728. https://doi.org/10.1002/jobm.201400730
- Shao H, Xu L, Yan Y. 2014. Thermostable lipases from extremely radioresistant bacterium Deinococcus radiodurans: cloning, expression, and biochemical characterization J. Basic. Microbiol. 54: 984-995. https://doi.org/10.1002/jobm.201300434
- Melani NB, Tambourgi EB, Silveira E. 2020. Lipases: From production to applications. Sep. Purif. Rev. 49: 143-158. https://doi.org/10.1080/15422119.2018.1564328
- Robinson PK. 2015. Enzymes: principles and biotechnological applications. Ess. Biochem. 59: 1-41. https://doi.org/10.1042/bse0590001
- Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, et al. 2018. Bacterial lipases: A review on purification and characterization. Prog. Biophys. Mol. Bio. 132: 23-34. https://doi.org/10.1016/j.pbiomolbio.2017.07.014
- Nisha S, Karthick SA, Gobi N. 2012. A review on methods, application and properties of immobilized enzyme. Chem. Sci. Rev. Lett. 1: 148-155.
- Khan AK, Mubarak NM, Abdullah EC, Khalid M, Nizamuddin S, Baloch HA, et al. 2019. Immobilization of Lipase Enzyme Carbon Nanotubes via Adsorption. IOP Conf. Ser. Mater. Sci. Eng. 495: 012055.
- Pereira DS, Fraga JL, Diniz MM, Fontes-Sant'Ana GC, Amaral PFF 2018. High catalytic activity of lipase from Yarrowia lipolytica immobilized by microencapsulation. Int. J. Mol. Sci. 19: 3393. https://doi.org/10.3390/ijms19113393
- Bhushan I, Parshad R, Qazi GN, Gupta VK. 2008. Immobilization of lipase by entrapment in Ca-alginate beads. J. Bioact. Compat. Pol. 23: 552-562. https://doi.org/10.1177/0883911508097866
- Carvalho NB, Vidal BT, Barbosa AS, Pereira MM, Mattedi S, Freitas LDS, et al. 2018. Lipase immobilization on silica xerogel treated with protic ionic liquid and its application in biodiesel production from different oils. Int. J. Mol. Sci. 19: 1829. https://doi.org/10.3390/ijms19071829
- Adlercreutz P. 2013. Immobilization and application of lipases in organic media. Chem. Soc. Rev. 42: 6406-6436. https://doi.org/10.1039/c3cs35446f
- Kim HK, Lee JK, Kim H, Oh TK. 1996. Characterization of an alkaline lipase from Proteus vulgaris K80 and the DNA sequence of the encoding gene. FEMS Microbiol. Lett. 135: 117-121. https://doi.org/10.1016/0378-1097(95)00439-4
- Natalia A, Kristiani L, Kim HK. 2014. Characterization of Proteus vulgaris k80 lipase immobilized on amine-terminated magnetic microparticles. J. Microbiol. Biotechnol. 24: 1382-1388. https://doi.org/10.4014/jmb.1404.04007
- Whangsuk W, Sungkeeree P, Thiengmag S, Kerdwong J, Sallabhan R, Mongkolsuk S, 2013. Gene cloning and characterization of a novel highly organic solvent tolerant lipase from Proteus sp. SW1 and its application for biodiesel production. Mol. Biotechnol. 53: 55-62. https://doi.org/10.1007/s12033-012-9518-7
- Korman TP, Sahachartsiri B, Charbonneau DM, Huang GL, Beauregard M, Bowie JU. 2013. Dieselzymes: development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnol. Biofuels 6: 70. https://doi.org/10.1186/1754-6834-6-70
- Misbah A, Aouine M, Er raouan S, Lekbach Y, Ettadili H, Ibnsouda Koraichi S, et al. 2019. Microorganisms isolated from Moroccan olive-mill wastes: Screening of their enzymatic activities for biotechnological use. Eur. Sci. J. 15: 464-494.
- Rathelot J, Julien R, Canioni P, Coeroli C, Sarda L. 1976. Studies on the effect of bile salt and colipase on enzymatic lipolysis. Improved method for the determination of pancreatic lipase and colipase. Biochimie 57: 1117-1122. https://doi.org/10.1016/S0300-9084(76)80572-X
- Gargouri Y, Pieroni G, Lowe PA, Sarda L, Verger R. 1986. Human gastric lipase. The effect of amphiphiles. Eur. J. Biochem. 156 : 305-310. https://doi.org/10.1111/j.1432-1033.1986.tb09583.x
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Ornstein L. 1964. Disc electrophoresis. I. Background and theory. Ann. NY Acad. Sci. 121: 321. https://doi.org/10.1111/j.1749-6632.1964.tb14207.x
- Davis BJ. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. NY Acad. Sci. 121: 404-427. https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
- Singh R, Gupta N, Goswami VK, Gupta R. 2006. A simple activity staining protocol for lipases and esterases. Appl. Microbiol. Biotechnol. 70: 679-682. https://doi.org/10.1007/s00253-005-0138-z
- Gargouri Y, Chahinian H, Moreau H, Ransac S, Verger R. 1991. Inactivation of pancreatic and gastric lipases by THL and C12: 0-TNB: a kinetic study with emulsified tributyrin. Biochim. Biophys. Acta (BBA) - Lipids and Lipid Metabolism 1085: 322-328. https://doi.org/10.1016/0005-2760(91)90136-6
- Ghamgui H, Karra chaabouni M, Gargouri Y. 2004. 1-Butyl oleate synthesis by immobilized lipase from Rhizopus oryzae: a comparative study between n-hexane and solvent-free system. Enzyme. Microb. Technol. 35: 355-363. https://doi.org/10.1016/j.enzmictec.2004.06.002
- Kaur M, Mehta A, Gupta R. 2019. Synthesis of methyl butyrate catalyzed by lipase from Aspergillus fumigatus. J. Oleo Sci. 68: 989-993. https://doi.org/10.5650/jos.ess19125
- Ghamgui H, Miled N, Karra-chaabouni M, Gargouri Y. 2007. Immobilization studies and biochemical properties of free and immobilized Rhizopus oryzae lipase onto CaCO3: A comparative study. Biochem. Eng. J. 37: 34-41. https://doi.org/10.1016/j.bej.2007.03.006
- Deng L, Tan T, Wang F, Xu X. 2003. Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99-125. Eur. J. Lipid Sci. Technol. 105: 727-734. https://doi.org/10.1002/ejlt.200300864
- Priyanka P, Kinsella G, Henehan GT, Ryan BJ. 2019. Isolation, purification and characterization of a novel solvent stable lipase from Pseudomonas reinekei. Protein Express. Purif. 153: 121-130. https://doi.org/10.1016/j.pep.2018.08.007
- Maraite A, Hoyos P, Carballeira JD, Cabrera AC, Ansorge-Schumacher MB, Alcantara AR. 2013. Lipase from Pseudomonas stutzeri: purification, homology modelling and rational explanation of the substrate binding mode. J. Mol. Catal B- Enzym. 87: 88-98. https://doi.org/10.1016/j.molcatb.2012.11.005
- Mohammadi M, Sepehrizadeh Z, Ebrahim-Habibi A, Shahverdi AR, Faramarzi MA, Setayesh N. 2015. Bacterial expression and characterization of an active recombinant lipase A from Serratia marcescens with truncated C-terminal region. J. Mol. Catal B-Enzym. 120: 84-92. https://doi.org/10.1016/j.molcatb.2015.06.001
- Abdou AM. 2003. Purification and partial characterization of psychrotrophic Serratia marcescens lipase. J. Dairy. Sci. 86: 127-132. https://doi.org/10.3168/jds.S0022-0302(03)73591-7
- Bouaziz A, Horchani H, Salem NB, Gargouri Y, Sayari A. 2011. Expression, purification of a novel alkaline Staphylococcus xylosus lipase acting at high temperature. Biochem. Eng. J. 54: 93-102. https://doi.org/10.1016/j.bej.2011.02.003
- Bacha AB, Al-Assaf A, Moubayed NM, Abid I. 2018. Evaluation of a novel thermo-alkaline Staphylococcus aureus lipase for application in detergent formulations. Saudi. J. Biol. Sci. 25: 409-417. https://doi.org/10.1016/j.sjbs.2016.10.006
- Oliveira AF, Bastos RG, Lucimara G. 2019. Bacillus subtilis immobilization in alginate microfluidic-based microparticles aiming to improve lipase productivity. Biochem. Eng. J. 143: 110-120. https://doi.org/10.1016/j.bej.2018.12.014
- Musa H, Kasim FH, Gunny AAN, Gopinath SC, Ahmad MA. 2018. Biosecretion of higher halophilic lipase by a novel Bacillus amyloliquefaciens AIKK2 using agro-waste as supporting substrate. Process. Biochem. 72: 55-62. https://doi.org/10.1016/j.procbio.2018.06.022
- Jadhav VV, Pote SS, Yadav A, Shouche YS, Bhadekar RK. 2013. Extracellular cold active lipase from the psychrotrophic Halomonas sp. BRI 8 isolated from the Antarctic sea water. Songklanakarin J. Sci. Technol. 35: 623-630.
- Gutierrez-Arnillas E, Arellano M, Deive FJ, Rodriguez A, Sanroman MA. 2017. Unravelling the suitability of biological induction for halophilic lipase production by Halomonas sp. LM1C cultures. Bioresour. Technol. 239: 368-377. https://doi.org/10.1016/j.biortech.2017.04.128
- Gao B, Su E, Lin J, Jiang Z, Ma Y, Wei D. 2009. Development of recombinant Escherichia coli whole-cell biocatalyst expressing a novel alkaline lipase-coding gene from Proteus sp. for biodiesel production. J. Biotechnol. 139: 169-175. https://doi.org/10.1016/j.jbiotec.2008.10.004
- Korman TP, Bowie JU. 2012. Crystal Structure of Proteus mirabilis Lipase, a novel lipase from the proteus/psychrophilic subfamily of lipase family I.1. PLoS One 7: e52890. https://doi.org/10.1371/journal.pone.0052890
- Kovacic F, Babic N, Krauss U, Jaeger K. 2019. Classification of lipolytic enzymes from bacteria. pp. 1-35. Aerobic utilization of hydrocarbons, oils and lipids, Springer.
- Gao B, Xu T, Lin J, Zhang L, Su E, Jiang Z, et al. 2011. Improving the catalytic activity of lipase LipK107 from Proteus sp. by site-directed mutagenesis in the lid domain based on computer simulation. J. Mol. Cataly. B- Enzym. 68: 286-291. https://doi.org/10.1016/j.molcatb.2010.12.001
- Kim HK, Park YS, Kim H, Oh TK. 1996. Partial interfacial activation of Proteus vulgaris lipase overexpressed in Escherichia coli. Biosci. Biotechnol. Biochem. 60: 1365-1367. https://doi.org/10.1271/bbb.60.1365
- Liu W, Li M, Yan Y. 2017. Heterologous expression and characterization of a new lipase from Pseudomonas fluorescens Pf0-1 and used for biodiesel production. Sci. Rep. 7: 1-11. https://doi.org/10.1038/s41598-016-0028-x
- Van Oort MG, Deveer AMTJ, Dijkman R, Tjeenk ML, Verheij HM, De Haas GH, et al. 1989. Purification and substrate specificity of Staphylococcus hyicus lipase. Biochem. 28: 9278-9285. https://doi.org/10.1021/bi00450a007
- Ayala-Bribiesca E, Turgeon SL, Britten M. 2017. Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions. J. Dairy. Sci. 100: 2454-2470. https://doi.org/10.3168/jds.2016-11902
- Torcello-Gomez A, Boudard C, Mackie AR. 2018. Calcium alters the interfacial organization of hydrolyzed lipids during intestinal digestion. Langmuir 34: 7536-7544. https://doi.org/10.1021/acs.langmuir.8b00841
- Alvarez FJ, Stella VJ. 1989. The role of calcium ions and bile salts on the pancreatic lipase-catalyzed hydrolysis of triglyceride emulsions stabilized with lecithin. Pharm. Res. 6: 449-457. https://doi.org/10.1023/A:1015956104500
- El Khattabi M, Van Gelder P, Bitter W, Tommassen J. 2003. Role of the calcium ion and the disulfide bond in the Burkholderia glumae lipase. J. Mol. Catal. B: Enzym. 22: 329-338. https://doi.org/10.1016/S1381-1177(03)00047-X
- Hertadi R, Widhyastuti H. 2015. Effect of Ca2+ Ion to the activity and stability of lipase isolated from Chromohalobacter japonicus BK-AB18. Procedia. Chem. 16: 306-313. https://doi.org/10.1016/j.proche.2015.12.057
- Invernizzi G, Papaleo E, Grandori R, De Gioia L, Lotti M. 2009. Relevance of metal ions for lipase stability: Structural rearrangements induced in the Burkholderia glumae lipase by calcium depletion. J. Struct. Biol. 168: 562-570. https://doi.org/10.1016/j.jsb.2009.07.021
- Martigne M, Julien R, Sarda L. 1987. Studies on the effect of bile and lipolysis products on pancreatic lipase and colipase activity in vitro. Reprod. Nutr. Dev. 27: 1005-1012. https://doi.org/10.1051/rnd:19870804
- Borgstrom B. 1977. The action of bile salts and other detergents on pancreatic lipase and the interaction with colipase. Biochim. Biophys. Acta (BBA) - Lipids Lipid Metabolism 488: 381-391. https://doi.org/10.1016/0005-2760(77)90197-7
- Borkar PS, Bodade RG, Rao SR, Khobragade CN. 2009. Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT 9. Braz. J. Microbiol. 40: 358-366. https://doi.org/10.1590/S1517-83822009000200028
- Ye P, Xu YJ, Han ZP, Hu PC, Zhao ZL, Lu XL, et al. 2013. Probing effects of bile salt on lipase adsorption at air/solution interface by sum frequency generation vibrational spectroscopy. Biochem. Eng. J. 80: 61-67. https://doi.org/10.1016/j.bej.2013.07.005
- Hadvary P, Sidler W, Meister W, Vetter W, Wolfer H. 1991. The lipase inhibitor tetrahydrolipstatin binds covalently to the putative active site serine of pancreatic lipase. J. Biol. Chem. 266: 2021-2027. https://doi.org/10.1016/S0021-9258(18)52203-1
- Luthi-Peng Q, Marki HP, Hadvary P. 1992. Identification of the active-site serine in human pancreatic lipase by chemical modification with tetrahydrolipstatin. FEBS Lett. 299: 111-115. https://doi.org/10.1016/0014-5793(92)80112-T
- Qi X. 2018. Review of the clinical effect of orlistat. IOP Conf. Ser. Mater. Sci. Eng. 301: 012063.
- Sternby B, Hartmann D, Borgstroöm B, Nilsson A. 2002. Degree of in vivo inhibition of human gastric and pancreatic lipases by Orlistat (Tetrahydrolipstatin, THL) in the stomach and small intestine. Clin. Nutr. 21: 395-402. https://doi.org/10.1054/clnu.2002.0565
- Kelley DE, Bray GA, Pi-Sunyer FX, Klein S, Hill J, Miles J, et al. 2002. Clinical efficacy of orlistat therapy in overweight and obese patients with insulin-treated type 2 diabetes: a 1-year randomized controlled trial. Diabetes Care 25: 1033-1041. https://doi.org/10.2337/diacare.25.6.1033
- Ben Ayed S, Ali MB, Bali A, Gargouri Y, Laouini D, Ben Ali Y. 2018. Secretory lipase from the human pathogen Leishmania major: Heterologous expression in the yeast Pichia pastoris and biochemical characterization. Biochimie 146: 119-126. https://doi.org/10.1016/j.biochi.2017.12.002
- Salah RB, Mosbah H, Fendri A, Gargouri A, Gargouri Y, Mejdoub H. 2006. Biochemical and molecular characterization of a lipase produced by Rhizopus oryzae. FEMS Microbiol. Lett. 260: 241-248. https://doi.org/10.1111/j.1574-6968.2006.00323.x
- Zouari N, Miled N, Cherif S, Mejdoub H, Gargouri Y. 2005. Purification and characterization of a novel lipase from the digestive glands of a primitive animal: the scorpion. Biochim. Biophys. Acta (BBA) - General Subjects 1726: 67-74. https://doi.org/10.1016/j.bbagen.2005.08.005
- Luthi-peng Q, Winkler FK. 1992. Large spectral changes accompany the conformational transition of human pancreatic lipase induced by acylation with the inhibitor tetrahydrolipstatin. Eur. J. Biochem. 205: 383-390. https://doi.org/10.1111/j.1432-1033.1992.tb16791.x
- Minovska V, Winkelhausen E, Kuzmanova S. 2005. Lipase immobilized by different techniques on various support materials applied in oil hydrolysis. J. Serbian Chem. Soc. 70: 609-624. https://doi.org/10.2298/JSC0504609M
- Rosu R, Uozaki Y, Iwasaki Y, Yamane T. 1997. Repeated use of immobilized lipase for monoacylglycerol production by solid-phase glycerolysis of olive oil. J. Am. Oil. Chem. Soc. 74: 445-450. https://doi.org/10.1007/s11746-997-0104-2
- Kharrat N, Ali YB, Marzouk S, Gargouri YT, Karra-Chaabouni M. 2011. Immobilization of Rhizopus oryzae lipase on silica aerogels by adsorption: Comparison with the free enzyme. Process. Biochem. 46: 1083-1089. https://doi.org/10.1016/j.procbio.2011.01.029
- Egwim EC, Adesina AA, Oyewole OA, Okoliegbe IN. 2012. Optimization of lipase immobilized on chitosan beads for biodiesel production. Global. Res. J. Microbiol. 2: 103-112. https://doi.org/10.5923/j.microbiology.20120204.07
- Dong H, Li J, Li Y, Hu L, Luo D. 2012. Improvement of catalytic activity and stability of lipase by immobilization on organobentonite. Chem. Eng. J. 181: 590-596. https://doi.org/10.1016/j.cej.2011.11.095
- Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. 2007. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzym. Microb. Technol. 40: 1451-1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
- Sankaran R, Show PL, Chang JS. 2016. Biodiesel production using immobilized lipase: feasibility and challenges. Biofuel. Bioprod. Bior. 10: 896-916. https://doi.org/10.1002/bbb.1719
- Narwal SK, Gupta R. 2012. Biodiesel production by transesterification using immobilized lipase. Biotechnol. Lett. 35: 479-490. https://doi.org/10.1007/s10529-012-1116-z
- Taher H, Al-Zuhair S. 2016. The use of alternative solvents in enzymatic biodiesel production: a review. Biofuel. Bioprod. Bior. 11: 168-194. https://doi.org/10.1002/bbb.1727
- Laane C, Boeren S, Vos K, Veeger C. 1987. Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 30: 81-87. https://doi.org/10.1002/bit.260300112
- Gorman LAS, Dordick JS. 1992. Organic solvents strip water off enzymes. Biotechnol. Bioeng. 39: 392-397. https://doi.org/10.1002/bit.260390405
- Religia P, Wijanarko A. 2015. Utilization of n-hexane as co-solvent to increase biodiesel yield on direct transesterification reaction from marine microalgae. Procedia Environ. Sci. 23: 412-420. https://doi.org/10.1016/j.proenv.2015.01.059
- Yusuf M, Athar M. 2015. Biodiesel Production Using Hexane as Co-Solvent. J. Biofuels 6: 88-91. https://doi.org/10.5958/0976-4763.2015.00013.6