DOI QR코드

DOI QR Code

Isolation and Characterization of a Novel Triolein Selective Lipase from Soil Environmental Genes

  • 투고 : 2020.07.16
  • 심사 : 2020.09.15
  • 발행 : 2020.12.28

초록

A novel lipase gene, Lip-1420, was isolated from a metagenomic library constructed from reed marsh from Mt. Jumbong in Korea, comprising 112,500 members of recombinant plasmids. The DNA sequence of Lip-1420-subclone (5,513 bp) was found to contain at least 11 ORFs according to the GenBank database. The ORF-3 gene was inserted into the pET21a plasmid containing the C-terminal 6-His tag and transformed into E. coli BL21(DE3) to express the recombinant lipase protein. Lip-1420 was purified using a fast protein liquid chromatography system. The gene was registered in GenBank (MH628529). The values of Km and Vmax were determined as 0.268 mM and 1.821 units, respectively, at 40℃ and pH 8.0, using p-nitrophenyl palmitate as the substrate. This lipase belongs to family IV taxonomically because it has conserved HGGG and GDSAG motifs in the constitutive amino acid sequence. According to the predicted structural model, the binding sites are represented by residues H78, G81, D150, S151, A152, V181, and D236. Finally, Lip-1420 showed triolein selectivity for methanolysis between triolein (18:1) and tristearin (18:0) substrates. Further study of the selective mechanism and structure-function relationship of this new lipase could be useful for more practical applications.

키워드

참고문헌

  1. Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Mocrobiol. Biotechnol. 64: 763-781. https://doi.org/10.1007/s00253-004-1568-8
  2. Kumar A, Dhar K, Kanwar SS, Arora PK. 2016. Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online 18: 2. https://doi.org/10.1186/s12575-016-0033-2
  3. Bajaj A, Lohan P, Jha P, Mehrotra R. 2010. Biodiesel production through lipase catalyzed transesterification. J. Mol. Catal. B: Enzym. 62: 9-14. https://doi.org/10.1016/j.molcatb.2009.09.018
  4. Torsvik V, Goksoyr J, Daae FL. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782-787. https://doi.org/10.1128/AEM.56.3.782-787.1990
  5. Steele HL, Jaeger K-E, Streit DR. 2009. Advances in recovery of novel biocatalysts from metagenomes. J. Mol. Microbiol. Biotechnol. 16: 25-37. https://doi.org/10.1159/000142892
  6. Riesenfeld CS, Schloss PD, Handelsman J. 2004. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38: 525-552. https://doi.org/10.1146/annurev.genet.38.072902.091216
  7. Ranjan R, Grover A, Kapardar RK, Sharma R. 2005. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem. Bioph. Res. Commun. 335: 57-65. https://doi.org/10.1016/j.bbrc.2005.07.046
  8. Lee MH, Hong KS, Malhotra S, Park J-H, Hwang EC, Choi HK, et al. 2010. A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl. Microbiol. Biotechnol. 88: 1125-1134. https://doi.org/10.1007/s00253-010-2729-6
  9. Glogauer A, Martini V, Faoro H, Couto G, Muller-Santos M, Monteiro R, et al. 2011. Identification and characterization of a new true lipase isolated through metagenomic approach. Microb. Cell Fact. 10: 54-69. https://doi.org/10.1186/1475-2859-10-54
  10. Su J, Zhang F, Sun W, Karuppiah V, Zhang G, Li Z, et al. 2015. A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World J. Microbiol. Biotechnol. 31: 1093-1102. https://doi.org/10.1007/s11274-015-1859-5
  11. Selvin J, Kennedy J, Lejon D, Kiran G, Dobson A. 2012. Isolation identification and biochemical characterization of a novel halotolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb. Cell Fact. 11: 72-86. https://doi.org/10.1186/1475-2859-11-72
  12. Wang Y, Srivastava KC, Shen G-J, Wang HY. 1995. Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). J. Ferment. Bioeng. 79: 433-438. https://doi.org/10.1016/0922-338X(95)91257-6
  13. Hoshino T, Sasaki T, Watanabe Y, Nagasawa T, Yamane T. 1992. Purification and some characteristics of extracellular lipase from Fusarium oxysporum f. sp. lini. Biosci. Biotechnol. Biochem. 56: 660-664. https://doi.org/10.1271/bbb.56.660
  14. Hasan F, Sanh A, Hameed A. 2005. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
  15. Ochoa LC, Gomez CR, Alfaro GV, Ros R. 2005. Screening, purification and characterization of the thermoalkalophilic lipase produced by bacillus thermoleovorans CCR11. Enzyme Microb. Technol. 37: 648-654. https://doi.org/10.1016/j.enzmictec.2005.06.003
  16. Ericks SA, Rita CR. 2008. Transesterification activity of a novel lipase from acinetobacter venetianus RAG-1. Antonie Van Leeuwenhoek. 94: 621-625. https://doi.org/10.1007/s10482-008-9276-5
  17. Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, et al. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 2541-2547. https://doi.org/10.1128/AEM.66.6.2541-2547.2000
  18. Lee SW, Won K, Lim HK, Kim JC, Choi GJ, Cho KY. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726. https://doi.org/10.1007/s00253-004-1722-3
  19. Vieira J, Messing J. 1987. Production of single-stranded plasmid DNA. Methods Enzymol. 153: 3-11. https://doi.org/10.1016/0076-6879(87)53044-0
  20. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning. A laboratory manual, pp 1549. 2nd ed. Cold Spring Harbor Laboratory Press, New York.
  21. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  22. Wu S, Zhang Y. 2007. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res. 35: 3375-3382. https://doi.org/10.1093/nar/gkm251
  23. Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5: 725-738. https://doi.org/10.1038/nprot.2010.5
  24. Ngo TD, Ryu BH, Ju H, Jang E, Park K, Kim KK, et al. 2013. Structural and functional analyses of a bacterial homologue of hormonesensitive lipase from a metagenomics library. Acta Crystallogr. D Biol. Crystallogr. 69: 1726-1737. https://doi.org/10.1107/S0907444913013425
  25. Zhang Y, Skolnick J. 2004. SPICKER: a clustering approach to identify near-native protein folds. J. Comput. Chem. 25: 865-871. https://doi.org/10.1002/jcc.20011
  26. Handelsman J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
  27. Simon C, Daniel R. 2009. Achievements and new knowledge unraveled by metagenomic approaches. Appl. Microbiol. Biotechnol. 85: 265-276. https://doi.org/10.1007/s00253-009-2233-z
  28. Sandkvist M. 2001. Biology of type II secretion. Mol. Microbiol. 40: 271-283. https://doi.org/10.1046/j.1365-2958.2001.02403.x
  29. Wang X. 2004. Lipid signaling. Curr. Opin. Plant Biol. 7: 329-336. https://doi.org/10.1016/j.pbi.2004.03.012
  30. Ramnath L, Sithole B, Govinden R. 2017. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can. J. Microbiol. 63: 179-192. https://doi.org/10.1139/cjm-2016-0447
  31. Mohamed YM, Ghazy MA, Sayed A, Ouf A, El-Dorry H, Siam R. 2013. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea brine pool. Sci. Rep. 3: 3358-3366. https://doi.org/10.1038/srep03358
  32. Haki GD, Rakshit SK. 2003. Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89: 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6
  33. Joseph B, Ramteke PW, Thomas G, Shrivastava N. 2007. Standard review cold-active microbial lipases: a versatile toosul for industrial applications. Biotechnol. Mol. Biol. Rev. 2: 39-48.
  34. Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S. 2011. A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis. 10: 221-229. https://doi.org/10.1186/1476-511X-10-221
  35. Lailaja VP, Chandrasekaran M. 2013. Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11. World J. Microbiol. Biotechnol. 29: 1349-1360. https://doi.org/10.1007/s11274-013-1298-0
  36. Lopez-Lopez O, Cerdan ME, Siso MIG. 2014. New extremophilic lipases and esterases from metagenomics. Curr. Protein Pept. Sci. 15: 445-455. https://doi.org/10.2174/1389203715666140228153801
  37. Jeon JY, Han Y, Kim Y-W, Lee Y-W, Hong S, Hwang IT. 2019. Feasibility of unsaturated fatty acid feedstocks as green alternatives in bio-oil refinery. Biofuels Bioprod. Biorefin. 13: 690-722. https://doi.org/10.1002/bbb.1979