References
- Gupta R, Gupta N, Rathi P. 2004. Bacterial lipases: an overview of production, purification and biochemical properties. Appl. Mocrobiol. Biotechnol. 64: 763-781. https://doi.org/10.1007/s00253-004-1568-8
- Kumar A, Dhar K, Kanwar SS, Arora PK. 2016. Lipase catalysis in organic solvents: advantages and applications. Biol. Proced. Online 18: 2. https://doi.org/10.1186/s12575-016-0033-2
- Bajaj A, Lohan P, Jha P, Mehrotra R. 2010. Biodiesel production through lipase catalyzed transesterification. J. Mol. Catal. B: Enzym. 62: 9-14. https://doi.org/10.1016/j.molcatb.2009.09.018
- Torsvik V, Goksoyr J, Daae FL. 1990. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782-787. https://doi.org/10.1128/AEM.56.3.782-787.1990
- Steele HL, Jaeger K-E, Streit DR. 2009. Advances in recovery of novel biocatalysts from metagenomes. J. Mol. Microbiol. Biotechnol. 16: 25-37. https://doi.org/10.1159/000142892
- Riesenfeld CS, Schloss PD, Handelsman J. 2004. Metagenomics: genomic analysis of microbial communities. Annu. Rev. Genet. 38: 525-552. https://doi.org/10.1146/annurev.genet.38.072902.091216
- Ranjan R, Grover A, Kapardar RK, Sharma R. 2005. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem. Bioph. Res. Commun. 335: 57-65. https://doi.org/10.1016/j.bbrc.2005.07.046
- Lee MH, Hong KS, Malhotra S, Park J-H, Hwang EC, Choi HK, et al. 2010. A new esterase EstD2 isolated from plant rhizosphere soil metagenome. Appl. Microbiol. Biotechnol. 88: 1125-1134. https://doi.org/10.1007/s00253-010-2729-6
- Glogauer A, Martini V, Faoro H, Couto G, Muller-Santos M, Monteiro R, et al. 2011. Identification and characterization of a new true lipase isolated through metagenomic approach. Microb. Cell Fact. 10: 54-69. https://doi.org/10.1186/1475-2859-10-54
- Su J, Zhang F, Sun W, Karuppiah V, Zhang G, Li Z, et al. 2015. A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World J. Microbiol. Biotechnol. 31: 1093-1102. https://doi.org/10.1007/s11274-015-1859-5
- Selvin J, Kennedy J, Lejon D, Kiran G, Dobson A. 2012. Isolation identification and biochemical characterization of a novel halotolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb. Cell Fact. 11: 72-86. https://doi.org/10.1186/1475-2859-11-72
- Wang Y, Srivastava KC, Shen G-J, Wang HY. 1995. Thermostable alkaline lipase from a newly isolated thermophilic Bacillus, strain A30-1 (ATCC 53841). J. Ferment. Bioeng. 79: 433-438. https://doi.org/10.1016/0922-338X(95)91257-6
- Hoshino T, Sasaki T, Watanabe Y, Nagasawa T, Yamane T. 1992. Purification and some characteristics of extracellular lipase from Fusarium oxysporum f. sp. lini. Biosci. Biotechnol. Biochem. 56: 660-664. https://doi.org/10.1271/bbb.56.660
- Hasan F, Sanh A, Hameed A. 2005. Industrial applications of microbial lipases. Enzyme Microb. Technol. 39: 235-251. https://doi.org/10.1016/j.enzmictec.2005.10.016
- Ochoa LC, Gomez CR, Alfaro GV, Ros R. 2005. Screening, purification and characterization of the thermoalkalophilic lipase produced by bacillus thermoleovorans CCR11. Enzyme Microb. Technol. 37: 648-654. https://doi.org/10.1016/j.enzmictec.2005.06.003
- Ericks SA, Rita CR. 2008. Transesterification activity of a novel lipase from acinetobacter venetianus RAG-1. Antonie Van Leeuwenhoek. 94: 621-625. https://doi.org/10.1007/s10482-008-9276-5
- Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, et al. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 2541-2547. https://doi.org/10.1128/AEM.66.6.2541-2547.2000
- Lee SW, Won K, Lim HK, Kim JC, Choi GJ, Cho KY. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotechnol. 65: 720-726. https://doi.org/10.1007/s00253-004-1722-3
- Vieira J, Messing J. 1987. Production of single-stranded plasmid DNA. Methods Enzymol. 153: 3-11. https://doi.org/10.1016/0076-6879(87)53044-0
- Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning. A laboratory manual, pp 1549. 2nd ed. Cold Spring Harbor Laboratory Press, New York.
- Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Wu S, Zhang Y. 2007. LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res. 35: 3375-3382. https://doi.org/10.1093/nar/gkm251
- Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5: 725-738. https://doi.org/10.1038/nprot.2010.5
- Ngo TD, Ryu BH, Ju H, Jang E, Park K, Kim KK, et al. 2013. Structural and functional analyses of a bacterial homologue of hormonesensitive lipase from a metagenomics library. Acta Crystallogr. D Biol. Crystallogr. 69: 1726-1737. https://doi.org/10.1107/S0907444913013425
- Zhang Y, Skolnick J. 2004. SPICKER: a clustering approach to identify near-native protein folds. J. Comput. Chem. 25: 865-871. https://doi.org/10.1002/jcc.20011
- Handelsman J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669-685. https://doi.org/10.1128/MMBR.68.4.669-685.2004
- Simon C, Daniel R. 2009. Achievements and new knowledge unraveled by metagenomic approaches. Appl. Microbiol. Biotechnol. 85: 265-276. https://doi.org/10.1007/s00253-009-2233-z
- Sandkvist M. 2001. Biology of type II secretion. Mol. Microbiol. 40: 271-283. https://doi.org/10.1046/j.1365-2958.2001.02403.x
- Wang X. 2004. Lipid signaling. Curr. Opin. Plant Biol. 7: 329-336. https://doi.org/10.1016/j.pbi.2004.03.012
- Ramnath L, Sithole B, Govinden R. 2017. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can. J. Microbiol. 63: 179-192. https://doi.org/10.1139/cjm-2016-0447
- Mohamed YM, Ghazy MA, Sayed A, Ouf A, El-Dorry H, Siam R. 2013. Isolation and characterization of a heavy metal-resistant, thermophilic esterase from a Red Sea brine pool. Sci. Rep. 3: 3358-3366. https://doi.org/10.1038/srep03358
- Haki GD, Rakshit SK. 2003. Developments in industrially important thermostable enzymes: a review. Bioresour. Technol. 89: 17-34. https://doi.org/10.1016/S0960-8524(03)00033-6
- Joseph B, Ramteke PW, Thomas G, Shrivastava N. 2007. Standard review cold-active microbial lipases: a versatile toosul for industrial applications. Biotechnol. Mol. Biol. Rev. 2: 39-48.
- Cherif S, Mnif S, Hadrich F, Abdelkafi S, Sayadi S. 2011. A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids Health Dis. 10: 221-229. https://doi.org/10.1186/1476-511X-10-221
- Lailaja VP, Chandrasekaran M. 2013. Detergent compatible alkaline lipase produced by marine Bacillus smithii BTMS 11. World J. Microbiol. Biotechnol. 29: 1349-1360. https://doi.org/10.1007/s11274-013-1298-0
- Lopez-Lopez O, Cerdan ME, Siso MIG. 2014. New extremophilic lipases and esterases from metagenomics. Curr. Protein Pept. Sci. 15: 445-455. https://doi.org/10.2174/1389203715666140228153801
- Jeon JY, Han Y, Kim Y-W, Lee Y-W, Hong S, Hwang IT. 2019. Feasibility of unsaturated fatty acid feedstocks as green alternatives in bio-oil refinery. Biofuels Bioprod. Biorefin. 13: 690-722. https://doi.org/10.1002/bbb.1979