DOI QR코드

DOI QR Code

Production, Purification and Characterization of a Melanin Bleaching Enzyme from Trametes velutina JS18

Trametes velutina JS18 유래 멜라닌 탈색 효소의 생산, 정제 및 특성

  • Jeon, Sung-Jong (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University) ;
  • Kim, Tae-Yun (Biomedical Engineering and Biotechnology Major, Division of Applied Bioengineering, Dong-Eui University)
  • 전숭종 (동의대학교 바이오응용공학부 의생명공학전공) ;
  • 김태윤 (동의대학교 바이오응용공학부 의생명공학전공)
  • Received : 2020.05.11
  • Accepted : 2020.06.17
  • Published : 2020.12.28

Abstract

The JS18 strain was isolated from an old tree forest and produced extracellular enzymes that decolorize synthetic melanin. Phylogenetic analysis, based on the internal transcribed spacer (ITS) sequence, indicate that JS18 belongs to the Trametes velutina species. JS18 demonstrated laccase activity but no manganese peroxidase or lignin peroxidase activity. Batch culture indicated that the melanin decolorization activity of JS18 strain originated from the laccase. Syringic acid and CuSO4 induced maximum laccase production, yielding 98 U/ml laccase activity after cultivation for 7 days at 25℃. T. velutina secretes an extracellular laccase in GYP medium, and this enzyme was purified using (NH4)2SO4 precipitation, Hi-trap Q Sepharose columns and gel filtration. The molecular weight of the purified enzyme was estimated to be 67 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis. This enzyme produced 80% of its melanin decolorization activity within the first 24 h of evaluation in the presence of 1-hydroxybenzotriazole (HBT), while only about 4% of the melanin was decolorized in the absence of the mediator. The greatest decolorization was observed at 1.5 mM/l HBT, which decolorized 81% of the melanin within the first 24 h. The optimum pH and temperature for this decolorization were found to be 5.0 and 37℃, respectively. Our results suggest the possibility of applying HBT induced T. velutina JS18 laccase-catalyzed melanin decolorization.

삼림지역의 고목에서 분리한 JS18 균주는 합성 멜라닌을 탈색하는 세포 외 분비효소를 생산했다. JS18 균주의 internal transcribed spacer (ITS) 염기서열을 분석하고 계통학적으로 확인한 결과 본 균주는 Trametes velutina로 동정되었다. JS18 균주는 laccase 활성을 나타냈지만 manganese peroxidase 및 lignin peroxidase 활성은 나타내지 않았다. 본 균주를 회분배양한 결과 멜라닌 탈색 활성은 laccase 활성으로부터 유래하는 것으로 확인되었다. Laccase 유도인자로써 Syringic acid 및 CuSO4를 첨가하고 25℃에서 7일간 배양한 결과 배양상등액에서 98 U/ml의 laccase 활성을 나타내었다. GYP 배지에서 배양한 T. velutina의 배양상등액에서 ammonium sulfate 침전, Hi-trap Q Sepharose 컬럼 및 gel filtration을 이용하여 효소를 정제하였고, SDS-PAGE에서 약 67 kDa의 분자량을 나타내었다. 정제된 효소의 멜라닌 탈색율은 효소 단독으로는 24 시간 만에 단지 4% 만을 나타내는 반면, HBT의 존재 하에서는 80%로 향상되었다. 또한 1.5 mM HBT의 농도에서는 최대 81%의 멜라닌 탈색율을 나타내었다. 본 효소의 멜라닌 탈색에 대한 최적 pH 및 온도는 각각 5.0와 37℃를 나타내었다. 본 연구에서는 T. velutina JS18 유래 laccase가 촉매하는 멜라닌 탈색 반응에서 redox mediator로써 HBT의 적용 가능성을 확인하였다.

Keywords

References

  1. Lin WP, Lai HL, Liu YL, Chiung YM, Shiau CY, Han JM, et al. 2005. Effect of melanin produced by a recombinant Escherichia coli on antibacterial activity of antibiotics. J. Microbiol. Immunol. Infect. 38: 320-326.
  2. Butler MJ, Day AW. 1998a. Destruction of fungal melanins by ligninases of Phanerochaete chrysosporium and other white rot fungi. Int. J. Plant Sci. 159: 989-995. https://doi.org/10.1086/297619
  3. Butler MJ, Day AW. 1998b. Fungal melanins: a review. Can. J. Microbiol. 44: 1115-1136. https://doi.org/10.1139/cjm-44-12-1115
  4. Riley PA. 1997. Melanin. Int. J. Biochem. Cell Biol. 29: 1235-1239. https://doi.org/10.1016/S1357-2725(97)00013-7
  5. Henson JM. 2001. Melanin, pp. 229-246. In M. Hofrichter and A. Steinbuechel (ed.), Biopolymers, Vol.1, Wiley-VCH Verlag GmbH, Weinheim, Germany.
  6. Terao M, Tomita K, Oki T, Tabe L, Gianni M, Garattini E. 1992. Inhibition of melanogenesis by BMY-28565, a novel compound depressing tyrosinase activity in B16 melanoma cells. Biochem. Pharmacol. 43: 183-189. https://doi.org/10.1016/0006-2952(92)90276-O
  7. Boissy RE, Visscher M, De Long MA. 2005. DeoxyArbutin: a novel reversible tyrosinase inhibitor with effective in vivo skin lightening potency. Exp. Dermatol. 14: 601-608. https://doi.org/10.1111/j.0906-6705.2005.00337.x
  8. Kim YJ, Uyama H. 2005. Tyrosinase inhibitors from natural and synthetic sources: structure, inhibition mechanism and perspective for the future. Cell Mol. Life Sci. 62: 1707-1723. https://doi.org/10.1007/s00018-005-5054-y
  9. Rendon MI, Gaviria JI. 2005. Review of skin‐lightening agents. Dermatologic Surgery 31: 886-890. https://doi.org/10.1111/j.1524-4725.2005.31736
  10. Matsubayashi T, Sakaeda T, Kita T, Kurimoto Y, Nakamura T, Nishiguchi K, et al. 2003. Intradermal concentration of hydroquinone after application of hydroquinone ointments is higher than its cytotoxic concentration. Biol. Pharm. Bull. 26: 1365-1367. https://doi.org/10.1248/bpb.26.1365
  11. Del Giudice P, Yves P. 2002. The widespread use of skin lightening creams in Senegal: a persistent public health problem in West Africa. Int. J. Dermatol. 41: 69-72. https://doi.org/10.1046/j.1365-4362.2002.01335.x
  12. Al-Saleh I, Shinwari N, El-Doush I, Billedo G, Al-Amodi M, Khogali F. 2004. Comparison of mercury levels in various tissues of albino and pigmented mice treated with two different brands of mercury skinlightening creams. Biometals 17: 167-175. https://doi.org/10.1023/B:BIOM.0000018377.17857.88
  13. Kaneko S, Cheng M, Murai H, Takenaka S. 2009. Purification and characterization of an extracellular laccase from Phlebia radiata strain BP-11-2 that decolorizes fungal melanin. Biosci. Biotechnol. Biochem. 73: 939-942. https://doi.org/10.1271/bbb.80740
  14. Khammuang S, Sarnthima R. 2013. Decolorization of synthetic melanins by crude laccases of Lentinus polychrous Lev. Folia microbiologica 58: 1-7. https://doi.org/10.1007/s12223-012-0151-4
  15. Nagasaki K, Kumazawa M, Murakami S, Takenaka S, Koike K, Aoki K. 2008. Purification, characterization, and gene cloning of Ceriporiopsis sp. strain MD-1 peroxidases that decolorize human hair melanin. Appl. Environ. Microbiol. 74: 5106-5112. https://doi.org/10.1128/AEM.00253-08
  16. Kim BS, Blaghen M, Hong HS, Lee KM. 2013. Purification and characterization of a melanin biodegradation enzyme from Geotrichum sp. Int. J. Cos. Sci. 38: 622-626. https://doi.org/10.1111/ics.12337
  17. Woo SH, Cho JS, Lee BS, Kim EK. 2004. Decolorization of melanin by lignin peroxidase from Phanerochaete chrysosporium. Biotechnol. Bioprocess. Eng. 9: 256-260. https://doi.org/10.1007/BF02942340
  18. Mohorcic M, Friedrich J, Renimel I, Andre P, Mandin D, Chaumont JP. 2007. Production of melanin bleaching enzyme of fungal origin and its application in cosmetics. Biotechnol. Bioproce. Eng. 12: 200-206. https://doi.org/10.1007/BF02931093
  19. Herve M, Hirschinger J, Granger P, Gilard P. 1994. A 13C solidstate NMR study of the structure and auto-oxidation process of natural and synthetic melanins. Biochi. Biophy. Acta. 1204: 19-27. https://doi.org/10.1016/0167-4838(94)90027-2
  20. Coconi-Linares N, Magana-Ortiz D, Guzman-Ortiz DA, Fernandez F, Loske AM, Gomez-Lim MA. 2014. High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 98: 9283-9294. https://doi.org/10.1007/s00253-014-6105-9
  21. Archibald FS. 1992. Lignin peroxidase activity is not important in biological bleaching and delignification of unbleached kraft pulp by Trametes versicolor. Appl. Environ. Microbiol. 58: 3101-3109. https://doi.org/10.1128/AEM.58.9.3101-3109.1992
  22. Baldrian P. 2006. Fungal laccases - occurrence and properties. FEMS Microbiol. Rev. 30: 215-242. https://doi.org/10.1111/j.1574-4976.2005.00010.x
  23. Cho JS. 2002. Studied on decoloration of melanin using laccase. Available from http://dspace.inha.ac.kr/handle/10505/11037.
  24. Son MJ, Kim YH, Nam SW, Jeon SJ. 2019. Optimization of Media Composition on the Production of Melanin Bleaching Enzyme from Peniophora sp. JS17. Microbiol. Biotechnol. Lett. 47: 250-258. https://doi.org/10.4014/mbl.1809.09004
  25. Yang Y, Wei F, Zhuo R, Fan F, Liu H, Zhang C, et al. 2013. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds. PLoS One 8: e79307. https://doi.org/10.1371/journal.pone.0079307
  26. Tavares APM, Coelho MAZ, Agapito MSM, Coutinho JAP, Xavier AMRB. 2006. Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Appl. Biochem. Biotech. 134: 233-248. https://doi.org/10.1385/ABAB:134:3:233
  27. Rosales E, Couto SR, Sanroman MA. 2007. Increased laccase production by Trametes hirsuta grown on ground orange peelings. Enzy. Microb. Technol. 40: 1286-1290. https://doi.org/10.1016/j.enzmictec.2006.09.015
  28. Xu F, Kulys JJ, Duke K, Li K, Krikstopaitis K, Deussen HJ, et al. 2000. Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds. Appl. Environ. Microbiol. 66: 2052-2056. https://doi.org/10.1128/AEM.66.5.2052-2056.2000