References
- McKnight GM, Duncan CW, Leifert C, Golden MH. 1999. Dietary nitrate in man: friend or foe? Br. J. Nutr. 81: 349-358. https://doi.org/10.1017/S000711459900063X
- Eisenbrand G, Spiegelhalder B, Preussmann R. 1980. Nitrate and nitrite in saliva. Oncology 37: 227-231. https://doi.org/10.1159/000225441
- Doel JJ, Benjamin N, Hector MP, Rogers M, Allaker RP. 2005. Evaluation of bacterial nitrate reduction in the human oral cavity. Eur. J. Oral Sci. 113: 14-19. https://doi.org/10.1111/j.1600-0722.2004.00184.x
- Bos PM, Van den Brandt PA, Wedel M, Ockhuizen T. 1988. The reproducibility of the conversion of nitrate to nitrite in human saliva after a nitrate load. Food Chem. Toxicol. 26: 93-97. https://doi.org/10.1016/0278-6915(88)90104-4
- Larsen FJ, Schiffer TA, Ekblom B, Mattsson MP, Checa A, Wheelock CE, et al. 2014. Dietary nitrate reduces resting metabolic rate: a randomized, crossover study in humans. Am. J. Clin. Nutr. 99: 843-850. https://doi.org/10.3945/ajcn.113.079491
- Mitsui T, Saito M, Harasawa R. 2018. Salivary nitrate-nitrite conversion capacity after nitrate ingestion and incidence of Veillonella spp. in elderly individuals. J. Oral Sci. 60: 405-410. https://doi.org/10.2334/josnusd.17-0337
- Duncan C, Dougall H, Johnston P, Green S, Brogan R, Leifert C, et al. 1995. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1: 546-551. https://doi.org/10.1038/nm0695-546
- Jonvik KL, Nyakayiru J, Pinckaers PJ, Senden JM, van Loon LJ, Verdijk LB. 2016. Nitrate-rich vegetables increase plasma nitrate and nitrite concentrations and lower blood pressure in healthy adults. J. Nutr. 146: 986-993. https://doi.org/10.3945/jn.116.229807
- Sobko T, Marcus C, Govoni M, Kamiya S. 2010. Dietary nitrate in Japanese traditional foods lowers diastolic blood pressure in healthy volunteers. Nitric Oxide 22: 136-140. https://doi.org/10.1016/j.niox.2009.10.007
- Doel JJ, Hector MP, Amirtham CV, Al-Anzan LA, Benjamin N, Allaker RP. 2004. Protective effect of salivary nitrate and microbial nitrate reductase activity against caries. Eur. J. Oral Sci. 112: 424-428. https://doi.org/10.1111/j.1600-0722.2004.00153.x
- Mitsui T, Fujihara M, Harasawa R. 2013. Salivary nitrate and nitrite may have antimicrobial effects on Desulfovibrio species. Biosci. Biotechnol. Biochem. 77: 2489-2491. https://doi.org/10.1271/bbb.130521
- Dykhuizen RS, Fraser A, McKenzie H, Golden M, Leifert C, Benjamin N. 1998. Helicobacter pylori is killed by nitrite under acidic conditions. Gut 42: 334-337. https://doi.org/10.1136/gut.42.3.334
- Hezel MP, Weitzberg E. 2015. The oral microbiome and nitric oxide homoeostasis. Oral Dis. 21: 7-16. https://doi.org/10.1111/odi.12157
- Hyde ER, Andrade F, Vaksman Z, Parthasarathy K, Jiang H, Parthasarathy DK, et al. 2014. Metagenomic analysis of nitrate-reducing bacteria in the oral cavity: implications for nitric oxide homeostasis. PLoS One 9: e88645. https://doi.org/10.1371/journal.pone.0088645
- Mashima I, Kamaguchi A, Nakazawa F. 2011. The distribution and frequency of oral Veillonella spp. in the tongue biofilm of healthy young adults. Curr. Microbiol. 63: 403-407. https://doi.org/10.1007/s00284-011-9993-2
- Beighton D, Clark D, Hanakuka B, Gilbert S, Do T. 2008. The predominant cultivable Veillonella spp. of the tongue of healthy adults identified using rpoB sequencing. Oral Microbiol. Immunol. 23: 344-347. https://doi.org/10.1111/j.1399-302X.2007.00424.x
- Mashima I, Liao YC, Miyakawa H, Theodorea CF, Thawboon B, Thaweboon S, et al. 2018. Veillonella infantium sp. nov., an anaerobic, Gram-stain-negative coccus isolated from tongue biofilm of a Thai child. Int. J. Syst. Evol. Microbiol. 68: 1101-1106. https://doi.org/10.1099/ijsem.0.002632
- Igarashi E, Kamaguchi A, Fujita M, Miyakawa H, Nakazawa F. 2009. Identification of oral species of the genus Veillonella by polymerase chain reaction. Oral Microbiol. Immunol. 24: 310-313. https://doi.org/10.1111/j.1399-302X.2009.00513.x
- Rudbeck L, Dissing J. 1998. Rapid, simple alkaline extraction of human genomic DNA from whole blood, buccal epithelial cells, semen and forensic stains for PCR. Biotechniques 25: 588-590. https://doi.org/10.2144/98254bm09
- Marchandin H, Teyssier C, Siméon De Buochberg M, Jean-Pierre H, Carriere C, et al. 2003. Intra-chromosomal heterogeneity between the four 16S rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy. Microbiology 149: 1493-1501. https://doi.org/10.1099/mic.0.26132-0
- Govoni M, Jansson EA, Weitzberg E, Lundberg JO. 2008. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 19: 333-337. https://doi.org/10.1016/j.niox.2008.08.003
- Evans JD. 1996. Straightforward statistics for the behavioral sciences. Pacific Grove, CA: Brooks/Cole Publishing.
- Roszak DB, Colwell RR. 1987. Metabolic activity of bacterial cells enumerated by direct viable count. Appl. Environ. Microbiol. 53: 2889-2893. https://doi.org/10.1128/AEM.53.12.2889-2893.1987
- Burleigh MC, Liddle L, Monaghan C, Muggeridge DJ, Sculthorpe N, Butcher JP, et al. 2018. Salivary nitrite production is elevated in individuals with a higher abundance of oral nitrate-reducing bacteria. Free Radic. Biol. Med. 120: 80-88. https://doi.org/10.1016/j.freeradbiomed.2018.03.023
- Cavanaugh SE, Bathrick AS. 2018. Direct PCR amplification of forensic touch and other challenging DNA samples: A review. Forensic Sci. Int. Genet. 32: 40-49. https://doi.org/10.1016/j.fsigen.2017.10.005