References
- Elshaqhabee FMF, Rokana N, Gulhane RD, Shama C, Panwar H. 2017. Bacillus as a potential probiotics: status, concerns, and future perspective. Front. Microbiol. 8: 1490. https://doi.org/10.3389/fmicb.2017.01490
- IIinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG. 2017. Secretome of intestinal bacilli: a natural guard against pathologies. Front. Microbiol. 8: 1666. https://doi.org/10.3389/fmicb.2017.01666
- Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50: 1-17. https://doi.org/10.1139/w03-076
- Kimura K, Yokoyama S. 2019. Trends in the application of Bacillus in fermented foods. Curr. Opin. Biotechnol. 56: 36-42. https://doi.org/10.1016/j.copbio.2018.09.001
- Ham S-S, Choi K-K, Cui C-B, Lee B-G, Joo D-S, Lee D-S. 2004. Quality characteristics of soy sauce fermented by Bacillus licheniformis NH20 isolated from traditional meju and Aspergillus oryzae. Food Sci. Biotechnol. 13: 537-543.
- Jeong D-W, Kim H-R, Jung G, Han S, Kim C-T, Lee J-H. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24: 648-660. https://doi.org/10.4014/jmb.1401.01009
- Kada S, Ishikawa A, Ohshima Y, Yoshida K. 2013. Alkaline serine protease AprE plays an essential role in poly-γ-glutamate production during natto fermentation. Biosci. Biotechnol. Biochem. 77: 802-809. https://doi.org/10.1271/bbb.120965
- Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
- Chen H, McGowan EM, Ren N, Lal S, Nassif N, Shad-Kaneez F, et al. 2018. Nattokinase: a promising g alternatoive in prevention and treatment of cardiovascular diseases. Biomark. Insights 13: 1177271918785130.
- Omura K, Hitosugi M, Zhu X, Ikeda M, Maeda H, Tokudome S. 2005. A newly derived protein from Bacillus subtilis natto with both antithrombotic and fibrinolytic effects. J. Pharmacol. Sci. 99: 247-251. https://doi.org/10.1254/jphs.FP0050408
- Yao Z, Kim JA, Kim JH. 2019. Characterization of a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal. J. Microbiol. Biotechnol. 29: 347-356. https://doi.org/10.4014/jmb.1810.10053
- Kwon GH, Lee HA, Park JY, Kim JS, Lim J, Park CS, et al. 2009. Development of a RAPD-PCR method for identification of Bacillus species isolated from cheonggukjang. Int. J. Food Microbiol. 129: 282-287. https://doi.org/10.1016/j.ijfoodmicro.2008.12.013
- Kim GM, Lee AR, Lee KW, Park JY, Chun J, Cha J, et al. 2009. Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from cheonggukjang. J. Microbiol. Biotechnol. 19: 997-1004. https://doi.org/10.4014/jmb.0811.600
- Eisen JA. 1995. The RecA protein as a model molecule for the molecular systematic studies of bacteria: comparison of trees of RecAs and 16S RNA from the same species. J. Mol. Evol. 41: 1105-1123. https://doi.org/10.1007/BF00173192
- Celandroni F, Vecchione A, Cara A, Mazzantini D, Lupetti A, Ghelardi E. 2019. Identification of Bacillus species: implication on the quality of probiotic formulations. PLoS One 14: e0217021. https://doi.org/10.1371/journal.pone.0217021
- Lee AR, Kim GM, Kwon GH, Lee KW, Park JY, Chun J, et al. 2010. Cloning of aprE86-1 gene encoding a 27-kDa mature fibrinolytic enzyme from Bacillus amyloliquefaciens CH86-1. J. Microbiol. Biotechnol. 20: 370-374. https://doi.org/10.4014/jmb.0906.06029
- Yao Z, Kim JA, Kim JH. 2018. Gene cloning, expression, and properties of a fibrinolytic enzyme secreted by Bacillus pumilus BS15 isolated from gul (oyster) jeotgal. Biotechnol. Bioprocess Eng. 23: 293-301. https://doi.org/10.1007/s12257-018-0029-7
- Lee AR, Kim GM, Park JY, Jo HD, Cha J, Song YS, et al. 2010. Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH86-1 isolated from Cheonggukjang. J. Korean Soc. Appl. Biol. Chem. 53: 56-61. https://doi.org/10.3839/jabc.2010.010
- Yao Z, Kim JA, Kim JH. 2018. Properties of a fibrinolytic enzyme secreted by Bacillus subtilis JS2 isolated from saeu (small shrimp) Jeotgal. Food Sci. Biotechnol. 27: 765-772. https://doi.org/10.1007/s10068-017-0299-4
- Ahn MJ, Ku HJ, Lee SH, Lee JH. 2015. Characterizatoin of a novel fibrinolytic enzyme, BsfA, from Bacillus subtilis ZA400 in kimchi reveals its pertinence to thrombosis treatment. J. Microbiol. Biotechnol. 25: 2090-2099. https://doi.org/10.4014/jmb.1509.09048
- Jeong SJ, Kwon GH, Chun J, Kim JS, Park CS, Kwon DY, et al. 2007. Cloning of fibrinolytic enzyme gene from Bacillus subtilis isolated from cheonggukjang and its expression in protease-deficient Bacillus subtilis strains. J. Microbiol. Biotechnol. 17: 1018-1023.
- Lanigan-Gerdes S, Dooley AN, Faull KF, Lazazzera BA. 2007. Identification of subtilisin, Epr and Vpr as enzymes that ptoduce CSF, an extracellular signaling peptide of Bacillus subtilis. Mol. Microbiol. 65: 1321-1333. https://doi.org/10.1111/j.1365-2958.2007.05869.x
- Corvey C, Stein T, Dusterhus S, Karas M, Entian KD. 2003. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisn (AprE), WprA, and Vpr. Biochem. Biophys. Res. Commun. 304: 48-54. https://doi.org/10.1016/S0006-291X(03)00529-1