DOI QR코드

DOI QR Code

중금속 오염 토양 정화를 위한 식물생장촉진세균: 특성, 활용 및 전망

Plant Growth-promoting Bacteria for Remediation of Heavy Metal Contaminated Soil: Characteristics, Application and Prospects

  • 조경숙 (이화여자대학교 환경공학과)
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University)
  • 투고 : 2020.08.26
  • 심사 : 2020.10.15
  • 발행 : 2020.12.28

초록

도시화 및 산업화로 인해 발생된 중금속으로 오염된 토양의 정화는 인간의 건강 뿐 아니라 지구생태계의 지속성을 위해 매우 중요하다. 중금속 오염 토양 정화 기술 중 식물상복원법은 타 방법에 비해 처리 단가가 저렴하고, 토양 비옥도 및 생물 다양성이 영향을 덜 받는 환경친화적인 방법이다. 이러한 식물상복원법에 식물생장촉진세균(plant growth promoting bacteria, PGPB)을 도입하여 중금속 독성 하에서 식물 생장을 촉진하고 중금속 정화 효율을 향상시킬 수 있다. 본 논문에서는 주요 토양오염물인 중금속의 발생원, 미생물·식물·인간에 미치는 중금속 영향 및 PGPB의 식물생장촉진 기작을 정리하였다. 중금속 오염 토양 정화를 위하여 식물상복원에 PGPB의 활용에 관한 최근 10년 동안의 연구 동향을 분석하였다. 또한, PGPB의 실제 적용 시 중금속 제거 효율에 미치는 다양한 환경 인자와 PGPB의 접종 방법의 영향을 고찰하였다. PGPB 활용 식물상복원 기술의 혁신을 위해서는 실제 현장에서 PGPB의 거동과 식물-PGPB-자생미생물 사이의 상호작용에 대한 이해가 필요하다.

Remediating soils contaminated with heavy metals due to urbanization and industrialization is very important not only for human health but also for ecosystem sustainability. Of the available remediation technologies for heavy metal-contaminated soils, phytoremediation is a relatively low-cost environment-friendly technology which preserves biodiversity and soil fertility. The application of plant growth-promoting bacteria (PGPB) during the phytoremediation of heavy metal-contaminated soils can enhance plant growth against heavy metal toxicity and increase heavy metal removal efficiency. In this study, the sources of heavy metals that have adverse effects on microorganisms, plants, and humans, and the plant growth-promoting traits of PGPB are addressed and the research trends of PGPB-assisted phytoremediation over the last 10 years are summarized. In addition, the effects of environmental factors and PGPB inoculation methods on the performance of PGPB-assisted phytoremediation are discussed. For the innovation of PGPB-assisted phytoremediation, it is necessary to understand the behavior of PGPB and the interactions among plant, PGPB, and indigenous microorganisms in the field.

키워드

과제정보

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF- 2019R1A2C2006701).

참고문헌

  1. Shah V, Daverey A. 2020. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Inno. 18: 100774. https://doi.org/10.1016/j.eti.2020.100774
  2. Zeng P, Guo Z, Cao X, Xiao X, Liu Y, Shi L. 2018. Phytostabilization potential of ornamental plants grown in soil contaminated with cadmium. Int. J. Phytoremediation 20: 311-320. https://doi.org/10.1080/15226514.2017.1381939
  3. Ali H, Khan E, Ilahi I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019: 6730305.
  4. Mao X, Jiang R, Xiao W, Yu J. 2015. Use of surfactants for the remediation of contaminated soils: A review. J. Hazard. Mater. 285: 419-435. https://doi.org/10.1016/j.jhazmat.2014.12.009
  5. Ye S, Zeng G, Wu H, Zhang C, Dai J, Liang J, et al. 2017. Biological technologies for the remediation of co-contaminated soil. Crit. Rev. Biotechnol. 37: 1062-1076. https://doi.org/10.1080/07388551.2017.1304357
  6. Hamid Y, Tang L, Irfan M, Cao X, Hussain B, Zahir M, et al. 2019. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 660: 80-96. https://doi.org/10.1016/j.scitotenv.2018.12.419
  7. Rodri ID, Dary M, Palomares AJ. 2008. Toxic effects of arsenic on Sinorhizobium - Medicago sativa symbiotic interaction. Environ. Poll. 54: 203-211.
  8. Chen C, Chiou I. 2008. Remediation of heavy metal-contaminated farm soil using turnover and attenuation method guided with a sustainable management framework. Environ. Eng. Sci. 25: 11-32. https://doi.org/10.1089/ees.2006.0183
  9. Inoue Y, Katayama A. 2011. Two-scale evaluation of remediation technologies for a contaminated site by applying economic input-output life cycle assessment: Risk-cost, risk-energy consumption and risk-CO2 emission. J. Hazard. Mater. 192: 1234-1242. https://doi.org/10.1016/j.jhazmat.2011.06.029
  10. Day SJ, Morse GK, Lester JN. 1997. The cost effectiveness of contaminated land remediation strategies. Sci. Total Environ. 201: 125-136. https://doi.org/10.1016/S0048-9697(97)00097-1
  11. Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. 2017. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 182: 247-268. https://doi.org/10.1016/j.gexplo.2016.11.021
  12. Liu L, Li W, Song W, Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 633: 206-219. https://doi.org/10.1016/j.scitotenv.2018.03.161
  13. Wan X, Lei M, Chen T. 2016. Cost-benefit calculation of phytoremediation technology for heavy-metal-contaminated soil. Sci. Total Environ. 563-564: 796-802. https://doi.org/10.1016/j.scitotenv.2015.12.080
  14. Megharaj M, Naidu R. 2017. Soil and brownfield bioremediation. Microb. Biotechnol. 10: 1244-1249. https://doi.org/10.1111/1751-7915.12840
  15. Guo J, Muhammad H, Lv X, Wei T, Ren X, Jia H, et al. 2020. Prospects and applications of plant growth promoting rhizobacteria to mitigate soil metal contamination: A review. Chemosphere 246: 125823. https://doi.org/10.1016/j.chemosphere.2020.125823
  16. Ahemad M. 2019. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. Arab. J. Chem. 12: 1365-1377. https://doi.org/10.1016/j.arabjc.2014.11.020
  17. Asad SA, Farooq M, Afzal A, West H. 2019. Integrated phytobial heavy metal remediation strategies for a sustainable clean environment - A review. Chemosphere 217: 925-941. https://doi.org/10.1016/j.chemosphere.2018.11.021
  18. Rascio N, Navari-Izzo F. 2011. Heavy metal hyperaccumulating plants: how and why do they do it- And what makes them so interesting? Plant Sci. 180: 169-181. https://doi.org/10.1016/j.plantsci.2010.08.016
  19. Baby R, Saifullah B, Hussein MZ. 2019. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res. Lett. 14: 341. https://doi.org/10.1186/s11671-019-3167-8
  20. Kumar V, Singh J, Kumar P. 2019. Heavy metals accumulation in crop plants: Sources, response mechanisms, stress tolerance and their effects. pp. 38-59. In: Contaminants in agriculture and environment: Health risks and remediation.
  21. Breton J, Daniel C, Vignal C, Body-Malapel M, Garat A, Ple C, Foligne B. 2016. Does oral exposure to cadmium and lead mediate susceptibility to colitis? The dark-and-bright sides of heavy metals in gut ecology. Sci. Rep. 6: 19200. https://doi.org/10.1038/srep19200
  22. Lal S, Ratna S, Said OB, Kumar R. 2018. Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: An advancement in metal phytoremediation technology. Environ. Technol. Inno. 10: 243-263. https://doi.org/10.1016/j.eti.2018.02.011
  23. Singh PC, Srivastava S, Shukla D, Bist V, Tripathi P, Anand V, et al. 2018. Mycoremediation mechanisms for heavy metal resistance/tolerance in plants. In: Prasad R. (eds) Mycoremediation and environmental sustainability. Fungal Biology. Springer, Cham. pp. 351-381. https://doi.org/10.1007/978-3-319-77386-5_14.
  24. Vashishth A, Tehri N, Kumar P. 2019. The potential of naturally occurring bacteria for the bioremediation of toxic metals pollution. Braz. J. Biol. Sci. 6: 39-51. https://doi.org/10.21472/bjbs.061205
  25. Mudgal V, Madaan N, Mudgal A, Singh RB, Mishra S. 2010. Effect of toxic metals on human health. Open Nutraceuticals J. 3: 94-99. https://doi.org/10.2174/1876396001003010094
  26. Alloway BJ. 1990. Heavy Metals in Soils. Blackie Academic and Professional/Chapman and Hall.
  27. Salt D, Blaylock M, Kumar N, Dushenkov V, Ensley BD, Chet I, et al. 1995. Phytoremediation: A Novel strategy for the removal of toxic metals from the environment using plants. Nat. Biotechnol. 13: 468-474. https://doi.org/10.1038/nbt0595-468
  28. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B. 2011. Remediation technologies for heavy metal contaminated groundwater. J. Environ. Manag. 92: 2355-2388. https://doi.org/10.1016/j.jenvman.2011.06.009
  29. Shakya AK, Ghosh PK. 2019. Stability against arsenic leaching from biogenic arsenosulphides generated under reduced environment. J. Cleaner Prod. 208: 1557-1562. https://doi.org/10.1016/j.jclepro.2018.10.187
  30. Ahemad M. 2015. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J. Genet. Eng. Biotechnol. 13: 51-58. https://doi.org/10.1016/j.jgeb.2015.02.001
  31. Yan A, Wang Y, Tan SN, Yusof MLM, Ghosh S, Chen Z. 2020. Phytoremediation: A promising approach for revegetation of heavy metal-polluted land. Front. Plant Sci. 11: 359. https://doi.org/10.3389/fpls.2020.00359
  32. Dalvi AA, Bhalerao SA. 2013. Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann. Plant Sci. 2: 362-368.
  33. Subhashini V, Swamy AVVS. 2013. Phytoremediation of Pb and Ni contaminated soils using Catharanthus roseus (L.). Univers. J. Environ. Res. Technol. 3: 465-472.
  34. Rigoletto M, Calza P, Gaggero E, Malandrino M, Fabbri D. 2020. Bioremediation methods for the recovery of lead-contaminated Soils: A Review. Appl. Sci. 10: 3528. https://doi.org/10.3390/app10103528
  35. Yadav BK, Siebel MA, van Bruggen JJA. 2011. Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean-Soil Air Water 39: 467-474. https://doi.org/10.1002/clen.201000385
  36. Ali H, Khan E, Sajad MA. 2013. Phytoremediation of heavy metals-concepts and applications. Chemosphere 91: 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075
  37. Lago-Vila M, Arenas-Lago D, Rodriguez-Seijo A, Andrade ML, Vega FA. 2019. Ability of Cytisus scoparius for phytoremediation of soils from a Pb/Zn mine: Assessment of metal bioavailability and bioaccumulation. J. Environ. Manag. 235: 152-160. https://doi.org/10.1016/j.jenvman.2019.01.058
  38. Souza RD, Ambrosini A, Passaglia LM. 2015. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet. Mol. Biol. 38: 401-419. https://doi.org/10.1590/S1415-475738420150053
  39. Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA, Shen FT, et al. 2015. Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agricultural soil. Int. J. Syst. Evol. Microbiol. 65: 4601-4607. https://doi.org/10.1099/ijsem.0.000618
  40. Xiao-Hui FAN, Zhang SA, Xiao-Dan MO, Yun-Cong LI, Yu-Qing FU, Zhi-Guang LIU. 2017. Effect of PGPR and N source on plant growth and N, P uptake by tomato grown in calcareous soils. Pedosphere 27: 1027-1036. https://doi.org/10.1016/s1002-0160(17)60379-5
  41. Xiao Y, Wang X, Chen W, Huang Q. 2017. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol. J. 34: 873-880. https://doi.org/10.1080/01490451.2017.1286416
  42. Mumtaz MZ, Ahmad M, Jamil M, Hussain T. 2017. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiol. Res. 202: 51-60. https://doi.org/10.1016/j.micres.2017.06.001
  43. Gontia-Mishra I, Sapre S, Tiwari S. 2017. Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 3: 185-190. https://doi.org/10.1016/j.rhisph.2017.04.013
  44. Kang SM, Waqas M, Shahzad R, You YH, Asaf S, Khan MA, et al. 2017. Isolation and characterization of a novel silicate-solubilizing bacterial strain Burkholderia eburnea CS4-2 that promotes growth of japonica rice (Oryza sativa L. cv. Dongjin). Soil Sci. Plant Nutr. 63: 233-241.
  45. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2: 587. https://doi.org/10.1186/2193-1801-2-587
  46. Babu AG, Kim JD, Oh BT. 2013. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J. Hazard. Mater. 250: 477-483. https://doi.org/10.1016/j.jhazmat.2013.02.014
  47. He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, et al. 2013. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90: 1960-1965. https://doi.org/10.1016/j.chemosphere.2012.10.057
  48. Jiang C, Sheng X, Qian M, Wang Q. 2008. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72: 157-164. https://doi.org/10.1016/j.chemosphere.2008.02.006
  49. Etesami H, Maheshwari DK. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotox. Environ. Safe. 156: 225-246. https://doi.org/10.1016/j.ecoenv.2018.03.013
  50. Chen L, Luo S, Li X, Wan Y, Chen J, Liu C. 2014. Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol. Biochem. 68: 300-308. https://doi.org/10.1016/j.soilbio.2013.10.021
  51. Tiwari S, Singh SN, Garg SK. 2012. Stimulated phytoextraction of metals from fly ash by microbial interventions. Environ. Technol. 33: 2405-2413. https://doi.org/10.1080/09593330.2012.670269
  52. Saleem M, Arshad M, Hussain S, Bhatti AS. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Indian Microbiol. Biotechnol. 34: 635-648. https://doi.org/10.1007/s10295-007-0240-6
  53. Kang BG, Kim WT, Yun HS, Chang SC. 2010. Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol. Rep. 4: 179-183. https://doi.org/10.1007/s11816-010-0136-1
  54. Arshad M, Saleem M, Hussain S. 2007. Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol. 25: 356-362. https://doi.org/10.1016/j.tibtech.2007.05.005
  55. Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud Univ. Sci. 26: 1-20. https://doi.org/10.1016/j.jksus.2013.05.001
  56. Glick BR. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169: 30-39. https://doi.org/10.1016/j.micres.2013.09.009
  57. Belimov AA, Dodd IC, Hontzeas N, Theobald JC, Safronova VI, Davies WJ. 2009. Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol. 181: 413-423. https://doi.org/10.1111/j.1469-8137.2008.02657.x
  58. Okazaki S, Nukui N, Sugawara M, Minamisawa K. 2004. Rhizobial strategies to enhance symbiotic interactions: rhizobitoxine and 1-aminocyclopropane-1-carboxylate deaminase. Microbes Environ. 19: 99-111. https://doi.org/10.1264/jsme2.19.99
  59. Egamberdiyeva D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl. Soil Ecol. 36: 184-189. https://doi.org/10.1016/j.apsoil.2007.02.005
  60. Kang SM, Khan AL, Waqas M, You YH, Kim JH, Kim JG, et al. 2014. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. 9: 673-682. https://doi.org/10.1080/17429145.2014.894587
  61. Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, et al. 2014. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 84: 115-124. https://doi.org/10.1016/j.plaphy.2014.09.001
  62. Liu F, Xing S, Ma H, Du Z, Ma B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97: 9155-9164. https://doi.org/10.1007/s00253-013-5193-2
  63. Rajkumar M, Ae N, Prasad MNV, Freitas H. 2010. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol. 28: 142-149. https://doi.org/10.1016/j.tibtech.2009.12.002
  64. Radzki W, Mañero FJG, Algar E, Garcia JAL, Garcia-Villaraco A, Solano BR. 2013. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Leeuwenhoek 104: 321-330. https://doi.org/10.1007/s10482-013-9954-9
  65. Ghavami N, Alikhani HA, Pourbabaei AA, Besharati H. 2017. Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. J. Plant Nutr. 40: 736-746. https://doi.org/10.1080/01904167.2016.1262409
  66. Wei X, Fang L, Cai P, Huang Q, Chen H, Liang W, et al. 2011. Influence of extracellular polymeric substances (EPS) on Cd adsorption by bacteria. Environ. Pollut. 159: 1369-1374. https://doi.org/10.1016/j.envpol.2011.01.006
  67. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, et al. 2015. Improved plant resistance to drought is promoted by the root‐associated microbiome as a water stress‐dependent trait. Environ. Microbiol. 17: 316-331. https://doi.org/10.1111/1462-2920.12439
  68. Ashraf M, Hasnain S, Berge O, Mahmood T. 2004. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils 40: 157-162. https://doi.org/10.1007/s00374-004-0766-y
  69. Chen WM, Wu CH, James EK, Chang JS. 2008. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica. J. Hazard. Mater. 151: 364-371. https://doi.org/10.1016/j.jhazmat.2007.05.082
  70. Pacwa-Plociniczak M, Plaza GA, Piotrowska-Seget Z, Cameotra SS. 2011. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12: 633-654. https://doi.org/10.3390/ijms12010633
  71. Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S. 2007. Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68: 1996-2002. https://doi.org/10.1016/j.chemosphere.2007.02.027
  72. Venkatesh NM, Vedaraman N. 2012. Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann. Microbiol. 62: 85-91. https://doi.org/10.1007/s13213-011-0230-9
  73. Pacheco GJ, Ciapina EMP, Gomes EdB, Pereira Junior N. 2010. Biosurfactant production by Rhodococcus erythropolis and its application to oil removal. Braz. J. Microbiol. 41: 685-693. https://doi.org/10.1590/S1517-83822010000300019
  74. Moreira H, Marques APGC, Franco AR, Rangel AOSS, Castro PML. 2014. Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ. Sci. Pollut. Res. 21: 9742-9753. https://doi.org/10.1007/s11356-014-2848-1
  75. Ma Y, Oliveira RS, Wu L, Luo Y, Rajkumar M, Rocha I, et al. 2015. Inoculation with metal-mobilizing plant-growth-promoting rhizobacterium Bacillus sp. SC2b and its role in rhizoremediation. J. Toxicol. Environ. Health Part A 78: 931-944. https://doi.org/10.1080/15287394.2015.1051205
  76. Azcon R, del Carmen Peralvarez M, Roldan A, Barea JM. 2010. Arbuscular mycorrhizal fungi, Bacillus cereus, and Candida parapsilosis from a multicontaminated soil alleviate metal toxicity in plants. Microb. Ecol. 59: 668-677. https://doi.org/10.1007/s00248-009-9618-5
  77. Oves M, Khan MS, Zaidi A. 2013. Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur. J. Soil Biol. 56: 72-83. https://doi.org/10.1016/j.ejsobi.2013.02.002
  78. Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, Lee KJ. 2014. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by upregulation of conserved salinity responsive factors in plants. Mol. Cells 37: 109. https://doi.org/10.14348/MOLCELLS.2014.2239
  79. Damodaran T, Rai RB, Jha SK, Kannan R, Pandey BK, Sah V, et al. 2014. Rhizosphere and endophytic bacteria for induction of salt tolerance in gladiolus grown in sodic soils. J. Plant Interact. 9: 577-584. https://doi.org/10.1080/17429145.2013.873958
  80. Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kannaste A, Behers L, et al. 2014. Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9: e96086. https://doi.org/10.1371/journal.pone.0096086
  81. Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S, et al. 2014. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol. Environ. Saf. 104: 285-293. https://doi.org/10.1016/j.ecoenv.2014.03.008
  82. Abbas G, Murtaza B, Bibi I, Shahid M, Niazi NK, Khan MI, et al. 2018. Arsenic uptake, toxicity, detoxification, and speciation in plants: Physiological, biochemical, and molecular aspects. Int. J. Environ. Res. Public Health 15: 59. https://doi.org/10.3390/ijerph15010059
  83. Marinho BA, Cristovao RO, Boaventura RAR, Vilar VJP. 2019. As (III) and Cr (VI) oxyanion removal from water by advanced oxidation/reduction processes - a review. Environ. Sci. Pollut. Res. 26: 2203-2227. https://doi.org/10.1007/s11356-018-3595-5
  84. Ghosh P, Rathinasabapathi B, Ma LQ. 2011. Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris Vittata L.. Bioresour. Technol. 102: 8756-8761. https://doi.org/10.1016/j.biortech.2011.07.064
  85. Wang Q, Xiong D, Zhao P, Yu X, Tu B, Wang G. 2011. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus Deltoides Lh05-17. J. Appl. Microbiol. 111: 1065-1074. https://doi.org/10.1111/j.1365-2672.2011.05142.x
  86. Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV, et al. 2013. Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica Juncea (L.) Czern. Var. R-46. J. Hard Mater. 262: 1039-1047. https://doi.org/10.1016/j.jhazmat.2012.08.019
  87. Srivastava S, Singh N. 2014. Mitigation approach of arsenic toxicity in chickpea grown in arsenic amended soil with arsenic tolerant plant growth promoting acinetobacter sp. Ecol. Eng. 70: 146-153. https://doi.org/10.1016/j.ecoleng.2014.05.008
  88. Pandey N, Bhatt R. 2016. Role of soil associated exiguobacterium in reducing arsenic toxicity and promoting plant growth in vigna radiata. Eur. J. Soil Biol. 75: 142-150. https://doi.org/10.1016/j.ejsobi.2016.05.007
  89. Pandya M, Rajput M, Rajkumar S. 2015. Exploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiata. Microbiology 84: 80-89. https://doi.org/10.1134/S0026261715010105
  90. Das S, Jean JS, Chou ML, Rathod J, Liu CC. 2016. Arsenite-oxidizing bacteria exhibiting plant growth promoting traits isolated from the rhizosphere of Oryza Sativa L.: Implications for mitigation of arsenic contamination in paddies. J. Hard Mater. 302: 10-18. https://doi.org/10.1016/j.jhazmat.2015.09.044
  91. Mallick I, Bhattacharyya C, Mukherji S, Dey D, Sarkar SC, Mukhopadhyay UK, et al. 2018. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere: A step towards arsenic rhizoremediation. Sci. Total Environ. 610: 1239-1250. https://doi.org/10.1016/j.scitotenv.2017.07.234
  92. Xiao AW, Li Z, Li WC, Ye ZH. 2020. The effect of plant growth-promoting rhizobacteria (PGPR) on arsenic accumulation and the growth of rice plants (Oryza sativa L.). Chemosphere 242: 125136. https://doi.org/10.1016/j.chemosphere.2019.125136
  93. Guarino F, Miranda A, Castiglione S, Cicatelli A. 2020. Arsenic phytovolatilization and epigenetic modifications in Arundo donax L. assisted by a PGPR consortium. Chemosphere 251: 126310. https://doi.org/10.1016/j.chemosphere.2020.126310
  94. Yang C, Ho YN, Inoue C, Chien MF. 2020. Long-term effectiveness of microbe-assisted arsenic phytoremediation by Pteris vittata in field trials. Sci. Total Environ. 740: 140137. https://doi.org/10.1016/j.scitotenv.2020.140137
  95. Liu C, Lin H, Li B, Dong Y, Yin T. 2020. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil. Ecotox. Environ. Safe. 202: 110958. https://doi.org/10.1016/j.ecoenv.2020.110958
  96. Moreno JL, Hernandez T, Perez A, Garcia C. 2002. Toxicity of cadmium to soil microbial activity: effect of sewage sludge addition to soil on the ecological dose. Appl. Soil Ecol. 21: 149-158. https://doi.org/10.1016/S0929-1393(02)00064-1
  97. Prapagdee B, Chanprasert M, Mongkolsuk S. 2013. Bioaugmentation with cadmium-resistant plant growth-promoting rhizobacteria to assist cadmium phytoextraction by Helianthus annuus. Chemosphere 92: 659-666. https://doi.org/10.1016/j.chemosphere.2013.01.082
  98. Guo J, Chi J. 2014. Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Merr. in Cd-contaminated soil. Plant Soil 375: 205-214. https://doi.org/10.1007/s11104-013-1952-1
  99. Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, et al. 2014. Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103: 99-104. https://doi.org/10.1016/j.chemosphere.2013.11.040
  100. Begum N, Afzal S, Zhao H, Lou L, Cai Q. 2018. Shoot endophytic plant growth-promoting bacteria reduce cadmium toxicity and enhance switchgrass (Panicum Virgatum L.) biomass. Acta Physiol. Plant. 40: 170. https://doi.org/10.1007/s11738-018-2737-1
  101. Liang X, He CQ, Ni G, Tang GE, Chen XP, Lei YR. 2014. Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd tolerant bacterial strains. Pedosphere 24: 322-329. https://doi.org/10.1016/s1002-0160(14)60018-7
  102. Ahmad I, Javed M, Hafiz A, Asghar N. 2015. Differential effects of plant growth promoting rhizobacteria on maize growth and cadmium uptake. J. Plant Growth Regul. 32: 303-315.
  103. Kamran MA, Syed JH. 2015. Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca Sativa. Environ. Sci. Pollut. Res. 22: 9275-9283. https://doi.org/10.1007/s11356-015-4074-x
  104. Pramanik K, Mitra S, Sarkar A, Maiti TK. 2018. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092. J. Hazard. Mater. 351: 317-329. https://doi.org/10.1016/j.jhazmat.2018.03.009
  105. Kumari M, Thakur IS. 2018. Biochemical and proteomic characterization of Paenibacillus sp. ISTP10 for its role in plant growth promotion and in rhizostabilization of cadmium. Bioresour. Technol. Reports 3: 59-66. https://doi.org/10.1016/j.biteb.2018.06.001
  106. Wani PA, Khan MS. 2010. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem. Toxicol. 48: 3262-3267. https://doi.org/10.1016/j.fct.2010.08.035
  107. Khan N, Mishra A, Chauhan PS, Sharma YK, Nautiyal CS. 2012. Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil. Antonie Leeuwenhoek 101: 453-459. https://doi.org/10.1007/s10482-011-9637-3
  108. Hassan W, Bashir S, Ali F, Ijaz M, Hussain M, David J. 2016. Role of ACC deaminase and/or nitrogen fixing rhizobacteria in growth promotion of wheat (Triticum aestivum L.) under cadmium pollution. Environ. Earth Sci. 75: 1-14. https://doi.org/10.1007/s12665-015-4873-x
  109. Rosariastuti R, Prijambada ID, Ngadiman, Prawidyarini GS, Putri AR. 2013. Isolation and identification of plant growth promoting and chromium uptake enhancing bacteria from soil contaminated by leather tanning industrial waste. J. Basic Appl. Sci. 9: 243-251.
  110. Soni SK, Singh R, Awasthi A, Kalra A. 2014. A Cr (Vi)-reducing Microbacterium Sp. Strain sucr140 enhances growth and yield of Zea mays in Cr (Vi) amended soil through reduced chromium toxicity and improves colonization of arbuscular mycorrhizal fungi. Environ. Sci. Pollut. Res. 21: 1971-1979. https://doi.org/10.1007/s11356-013-2098-7
  111. Danish S, Zafar-ul-Hye M. 2019. Co-application of ACC-deaminase producing PGPR and timber-waste biochar improves pigments formation, growth and yield of wheat under drought stress. Sci. Rep. 9: 5999. https://doi.org/10.1038/s41598-019-42374-9
  112. Maqbool Z, Asghar HN, Shahzad T, Hussain S, Riaz M, Ali S, et al. 2015. Isolating, screening and applying chromium reducing bacteria to promote growth and yield of okra(Hibiscus esculentus L.) in chromium contaminated soils. Ecotox. Environ. Safe. 114: 343-349. https://doi.org/10.1016/j.ecoenv.2014.07.007
  113. Ju W, Liu L, Jin X, Duan C, Cui Y, Wang J, et al. 2020. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere 254: 126724. https://doi.org/10.1016/j.chemosphere.2020.126724
  114. Hadi F, Bano A. 2010. Effect of diazotrophs (Rhizobium and Azobactor) on growth of maize (Zea mays L.) and accumulation of Lead (Pb) in different plant parts. Pak. J. Bot. 42: 4363-4370.
  115. Saleem M, Asghar HN, Zahir ZA, Shahid N. 2018. Impact of lead tolerant plant growth promoting rhizobacteria on growth, physiology, antioxidant activities, yield and lead content in sunflower in lead contaminated soil. Chemosphere 195: 606-614. https://doi.org/10.1016/j.chemosphere.2017.12.117
  116. Long XX, Chen XM, Wong JWC, Wei ZB, Wu QT. 2013. Feasibility of enhanced phytoextraction of Zn contaminated soil with Zn mobilizing and plant growth promoting endophytic bacteria. T. Nonferr. Metal Soc. 23: 2389-2396. https://doi.org/10.1016/S1003-6326(13)62746-6
  117. Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV, Harvie BA. 2015. Mechanism behind bacteria induced plant growth promotion and Zn accumulation in Brassica juncea. J. Hazard. Mater. 283: 490-499. https://doi.org/10.1016/j.jhazmat.2014.09.064
  118. Franchi E, Rolli E, Marasco R, Agazzi G, Borin S, Cosmina P, et al. 2017. Phytoremediation of a multi contaminated soil: Mercury and arsenic phytoextraction assisted by mobilizing agent and plant growth promoting bacteria. J. Soils Sediments 17: 1224-1236. https://doi.org/10.1007/s11368-015-1346-5
  119. Abdelkrim S, Jebara SH, Saadani O, Abid G, Taamalli W, Zemni H, et al. 2020. In situ effects of Lathyrus sativus- PGPR to remediate and restore quality and fertility of Pb and Cd polluted soils. Ecotox. Environ. Safe. 192: 110260. https://doi.org/10.1016/j.ecoenv.2020.110260
  120. Montalban B, Thijs S, Lobo MC, Weyens N, Ameloo M, Vangronsveld J, et al. 2017. Cultivar and metal-specific effects of endophytic bacteria in Helianthus tuberosus exposed to Cd and Zn. Int. J. Mol. Sci. 18: 2026. https://doi.org/10.3390/ijms18102026
  121. Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, et al. 2010. Culturable bacteria from Zn-and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J. Appl. Microbiol. 108: 1471-1484. https://doi.org/10.1111/j.1365-2672.2010.04670.x
  122. Jing YX, Yan JL, He HD, Yang DJ, Xiao L, Zhong T, et al. 2014. Characterization of bacteria in the rhizosphere soils of Polygonum pubescens and their potential in promoting growth and Cd Pb, Zn uptake by Brassica napus. Int. J. Phytorem. 16: 321-333. https://doi.org/10.1080/15226514.2013.773283
  123. Plociniczak T, Sinkkonen A, Romantschuk M, Sulowicz S, Piotrowska-Seget Z. 2016. Rhizospheric bacterial strain Brevibacterium casei MH8a colonizes plant tissues and enhances Cd, Zn, Cu phytoextraction by white mustard. Front. Plant Sci. 7: 1-10.
  124. Zainab N, Amna Din BU, Javed MT, Afridi MS, Mukhtar T, Kamran MA, et al. 2020. Deciphering metal toxicity responses of flax (Linum usitatissimum L.) with exopolysaccharide and ACC-deaminase producing bacteria in industrially contaminated soils. Plant Physiol. Biochem. 152: 90-99. https://doi.org/10.1016/j.plaphy.2020.04.039
  125. Guo J, Tang S, Ju X, Ding Y, Liao S, Song N. 2011. Effects of inoculation of a plant growth promoting rhizobacterium Burkholderia Sp. D54 on plant growth and metal uptake by a hyperaccumulator Sedum alfredii Hance grown on multiple metal contaminated soil. World J. Microbiol. Biotechnol. 27: 2835-2844. https://doi.org/10.1007/s11274-011-0762-y
  126. Guo J, Lv X, Jia H, Hua L, Ren X, Muhammad H, et al. 2019. Effects of EDTA and plant growth-promoting rhizobacteria on plant growth and heavy metal uptake of hyperaccumulator Sedum alfredii Hance. J. Environ. Sci. 88: 361-369.
  127. Rilling JI, Acuña JJ, Nannipieri P, Cassane F, Maruyama F, Jorquera MA. 2019. Current opinion and perspectives on the methods for tracking and monitoring plant growth-promoting bacteria. Soil Biol. Biochem. 130: 205-219. https://doi.org/10.1016/j.soilbio.2018.12.012
  128. Compant S, Clement C, Sessitsch A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42: 669-678. https://doi.org/10.1016/j.soilbio.2009.11.024
  129. Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245: 83-93. https://doi.org/10.1023/A:1020663916259
  130. Tabassum B, Khan A, Tariq M, Ramzan M, Khan MSI, Shahid N, et al. 2017. Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 121: 102-117. https://doi.org/10.1016/j.apsoil.2017.09.030
  131. Singh G, Singh N, Marwaha TS. 2009. Crop genotype and a novel symbiotic fungus influences the root endophytic colonization potential of plant growth promoting rhizobacteria. Physiol. Mol. Biol. Plants 15: 87-92. https://doi.org/10.1007/s12298-009-0009-7
  132. Depret G, Laguerre G. 2008. Plant phenology and genetic variability in root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea. New Phytol. 179: 224-235. https://doi.org/10.1111/j.1469-8137.2008.02430.x
  133. Burns JH, Anacker BL, Strauss SY, Burke DJ. 2015. Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB PLANTS 7 plv030-plv030.
  134. Weyens N, Boulet J, Adriaensen D, Timmermans JP, Prinsen E, Oevelen S, et al. 2012. Contrasting colonization and plant growth promoting capacity between wild type and a gfp-derative of the endophyte Pseudomonas putida W619 in hybrid poplar. Plant Soil 356: 217-230. https://doi.org/10.1007/s11104-011-0831-x
  135. Vande Broek A, Michiels J, van Gool A, Vanderleyden J. 1993. Spatial-temporal colonization patterns of Azospirillum brasilense on the wheat root surface and expression of the bacterial nifH gene during association. Mol. Plant Microbe Interact. 6: 592-600. https://doi.org/10.1094/MPMI-6-592
  136. Ramirez KS, Craine JM, Fierer N. 2012. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18: 1918-1927. https://doi.org/10.1111/j.1365-2486.2012.02639.x
  137. Afzal M, Yousaf S, Reichenauer T, Sessitsch A. 2012. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil. Int. J. Phytoremediation 14: 35-47. https://doi.org/10.1080/15226514.2011.552928
  138. Sirohi G, Upadhyay A, Srivastava PS, Srivastava S. 2015. PGPR mediated zinc biofertilization of soil and its impact on growth and productivity of wheat. J. Soil Sci. Plant Nutr. 15: 202-216.
  139. Gamalero E, Lingua G, Berta G, Lemanceau P. 2003. Methods for studying root colonization by introduced beneficial bacteria. Agronomie 23: 407-418. https://doi.org/10.1051/agro:2003014
  140. Watt M, Hugenholtz P, White R, Vinall K. 2006. Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environ. Microbiol. 8: 871-884. https://doi.org/10.1111/j.1462-2920.2005.00973.x
  141. Rothballer M, Schmid M, Hartmann A. 2003. In situ localization and PGPR-effect of Azospirillum brasilense strains colonizing roots of different wheat varieties. Symbiosis 34: 261-279.
  142. Oliveira AL, Stoffels M, Schmid M, Reis VM, Baldani JI, Hartmann A. 2009. Colonization of sugarcane plantlets by mixed inoculations with diazotrophic bacteria. Eur. J. Soil Biol. 45: 106-113. https://doi.org/10.1016/j.ejsobi.2008.09.004
  143. Wu CH, Hwang YC, Lee W, Mulchandani A, Wood TK, Yates MV, et al. 2008. Detection of recombinant Pseudomonas putida in the wheat rhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA. Appl. Microbiol. Biotechnol. 79: 511-518. https://doi.org/10.1007/s00253-008-1438-x
  144. Compant S, Mathieu F. 2013. Use of DOPE-FISH tool to better visualize colonization of plants by beneficial bacteria? An example with Saccharothrix algeriensis NRRL B-24137 colonizing grapevine plants. In: Molecular Microbial Ecology of the Rhizosphere. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 929-931.
  145. Podile AR, Kishore K. 2006. Plant growth-promoting rhizobacteria. In: Plant-associated Bacteria, pp. 195-230.
  146. Chen Z, Sheng X, He L, Huang Z, Zhang W. 2013. Effects of root inoculation with bacteria on the growth, Cd uptake and bacterial communities associated with rape grown in Cd-contaminated soil. J. Hazard. Mater. 244-245: 709-717. https://doi.org/10.1016/j.jhazmat.2012.10.063
  147. Menezes-Blackburn D, Inostroza NG, Gianfreda L, Greiner R, Mora ML, Jorquera MA. 2016. Phytase-producing Bacillus sp. inoculation increases phosphorus availability in cattle manure. J. Soil Sci. Plant Nutr. 16: 200-210.
  148. Jansson JK. 1995. Tracking genetically engineered microorganisms in nature. Curr. Opin. Biotechnol. 6: 275-283. https://doi.org/10.1016/0958-1669(95)80048-4
  149. Fernandes P, Simoes-Araujo J, Varial de Melo LH, Souza Galisa P, Leal L, Baldani J, et al. 2014. Development of a real-time PCR assay for the detection and quantification of Gluconacetobacter diazotrophicus in sugarcane grown under field conditions. Afr. J. Microbiol. Res. 8: 2937-2946. https://doi.org/10.5897/AJMR2014.6779
  150. Couillerot O, Poirier MA, Prigent-Combaret C, Mavingui P, Caballero-Mellado J, Moënne-Loccoz Y. 2010. Assessment of SCAR markers to design real-time PCR primers for rhizosphere quantification of Azospirillum brasilense phytostimulatory inoculants of maize. J. Appl. Microbiol. 109: 528-538. https://doi.org/10.1111/j.1365-2672.2010.04673.x
  151. Pereira TP, Do Amaral FP, Dall'Asta P, Brod FC, Arisi AC. 2014. Real-time PCR quantification of the plant growth promoting bacteria Herbaspirillum seropedicae strain SmR1 in maize roots. Mol. Biotechnol. 56: 660-670. https://doi.org/10.1007/s12033-014-9742-4
  152. Brandt J, Albertsen M. 2018. Investigation of detection limits and the influence of DNA extraction and primer choice on the observed microbial communities in drinking water samples using 16S rRNA gene amplicon sequencing. Front Microbiol. 9: 2140. https://doi.org/10.3389/fmicb.2018.02140
  153. Kong Z, Wu Z, Glick BR, He S, Huang C, Wu L. 2019. Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal contaminated soils. Ecotoxicol. Environ. Safe. 183: 109504. https://doi.org/10.1016/j.ecoenv.2019.109504
  154. Quadt-Hallmann A, Kloepper J. 1996. Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species. Can. J. Microbiol. 42: 1144-1154. https://doi.org/10.1139/m96-146
  155. Hansen M, Kragelund L, Nybroe O. 1997. Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol. Ecol. 23: 353-360. https://doi.org/10.1016/S0168-6496(97)00037-8
  156. Krishnen G, Kecskes ML, Rose MT, Geelan-Small P, Amprayn K, Pereg L, et al. 2011. Field monitoring of plant-growth-promoting rhizobacteria by colony immunoblotting. Can. J. Microbiol. 57: 914-922. https://doi.org/10.1139/w11-059
  157. Schloter M, Borlinghaus R, Bode W, Hartmann A. 1993. Direct identification, and localization of Azospirillum in the rhizosphere of wheat using fluorescence-labelled monoclonal antibodies and confocal scanning laser microscopy. J. Microsc. 171: 173-177. https://doi.org/10.1111/j.1365-2818.1993.tb03371.x
  158. Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Hoflich G, et al. 1997. Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum bv. trifolii R39 studied with monospecific polyclonal antisera. Appl. Environ. Microbiol. 63: 2038-2046. https://doi.org/10.1128/aem.63.5.2038-2046.1997
  159. Garcia J, Schloter M, Durkaya T, Hartmann A, Manero F. 2003. Colonization of pepper roots by a plant growth promoting Pseudomonas fluorescens strain. Biol. Fert. Soils 37: 381-385. https://doi.org/10.1007/s00374-003-0608-3
  160. Grilli-Caiola MG, Canini A, Botta A, Gallo MD. 2004. Localization of Azospirillum brasilense Cd in inoculated tomato (Lycopersicon esculentum Mill.) roots. Ann. Microbiol. 54: 365-380.
  161. Mourya S, Jauhri KS. 2002. lacZ tagging of phosphate solubilizing Pseudomonas striata for rhizosphere colonization. Indian J. Biotechnol. 1: 275-279.
  162. Solanki M, Garg FC. 2014. The use of lacZ marker in enumeration of Azotobacter chroococcum in carrier based inoculants. Braz. J. Microbiol. 45: 595-601. https://doi.org/10.1590/S1517-83822014000200030
  163. Compant S, Reiter B, Sessitsch A, Clement C, Barka EA, Nowak J. 2005. Endophytic colonization of Vitis vinifera L. by plant growth- promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71: 1685-1693. https://doi.org/10.1128/AEM.71.4.1685-1693.2005
  164. De Weger L, Kuiper I, Van Der Bij A, Lugtenberg BJ. 1997. Use of a lux-based procedure to rapidly visualize root colonisation by Pseudomonas fluorescens in the wheat rhizosphere. Antonie Leeuwenhoek 72: 365-372. https://doi.org/10.1023/A:1000565413024
  165. Kragelund L, Hosbond C, Nybroe O. 1997. Distribution of metabolic activity and phosphate starvation response of lux-tagged Pseudomonas fluorescens reporter bacteria in the barley rhizosphere. Appl. Environ. Microbiol. 63: 4920-4928. https://doi.org/10.1128/aem.63.12.4920-4928.1997
  166. Batista L, Irisarri P, Rebuffo M, Cuitiño MJ, Sanjuan J, Monza J. 2015. Nodulation competitiveness as a requisite for improved rhizobial inoculants of Trifolium pratense. Biol. Fert. Soils 51: 11-20. https://doi.org/10.1007/s00374-014-0946-3
  167. Wang C, Wang D, Zhou Q. 2004. Colonization and persistence of a plant growth promoting bacterium Pseudomonas fluorescens strain CS85, on roots of cotton seedlings. Can. J. Microbiol. 50: 475-481. https://doi.org/10.1139/w04-040
  168. De Weger LA, Dunbar P, Mahafee WF, Lugtenberg BJ, Sayler GS. 1991. Use of bioluminescence markers to detect Pseudomonas spp. in the rhizosphere. Appl. Environ. Microbiol. 57: 3641-3644. https://doi.org/10.1128/AEM.57.12.3641-3644.1991
  169. Gaby JC, Buckley DH. 2014. A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria. Database 2014: bau001, doi:10.1093/database/bau001.
  170. Ludueña LM, Anzuay MS, Angelini JG, Barros G, Luna MF, Monge MP, et al. 2017. Role of bacterial pyrroloquinoline quinone in phosphate solubilizing ability and in plant growth promotion on strain Serratia sp. S119. Symbiosis 72: 31-43. https://doi.org/10.1007/s13199-016-0434-7
  171. Jijon-Moreno S, Marcos-Jimenez C, Pedraza RO, Ramirez-Mata A, de Salamone IG, Fernandez-Scavino A, et al. 2015. The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense. Antonie Van Leeuwenhoek 107: 1501-1517. https://doi.org/10.1007/s10482-015-0444-0
  172. Peng J, Wu D, Liang Y, Li L, Guo Y. 2019. Disruption of acdS gene reduces plant growth promotion activity and maize saline stress resistance by Rahnella aquatilis HX2. J. Basic Microbiol. 59: 402-411. https://doi.org/10.1002/jobm.201800510
  173. Jorquera MA, Inostroza NG, Lagos LM, Barra PJ, Marileo LG, Rilling JI, et al. 2014. Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Biol. Fert. Soils 50: 1141-1153. https://doi.org/10.1007/s00374-014-0935-6

피인용 문헌

  1. 옥수수와 톨페스큐 근권 유래의 메탄 산화 및 아산화질소 환원 세균 컨소시움 특성 vol.49, pp.2, 2020, https://doi.org/10.48022/mbl.2102.02007