DOI QR코드

DOI QR Code

Enhanced Lycopene Production by UV-C Irradiation in Radiation-Resistant Deinococcus radiodurans R1

  • Kang, Chang Keun (School of Environmental Engineering, University of Seoul) ;
  • Yang, Jung Eun (Department of Advanced Process Technology and Fermentation, World Institute of Kimchi) ;
  • Park, Hae Woong (Department of Advanced Process Technology and Fermentation, World Institute of Kimchi) ;
  • Choi, Yong Jun (School of Environmental Engineering, University of Seoul)
  • Received : 2020.09.08
  • Accepted : 2020.10.04
  • Published : 2020.12.28

Abstract

Although classical metabolic engineering strategies have succeeded in developing microbial strains capable of producing desired bioproducts, metabolic imbalance resulting from extensive genetic manipulation often leads to decreased productivity. Thus, abiotic strategies for improving microbial production performance can be an alternative to overcome drawbacks arising from intensive metabolic engineering. Herein, we report a promising abiotic method for enhancing lycopene production by UV-C irradiation using a radiation-resistant ΔcrtLm/crtB+dxs+ Deinococcus radiodurans R1 strain. First, the onset of UV irradiation was determined through analysis of the expression of 11 genes mainly involved in the carotenoid biosynthetic pathway in the ΔcrtLm/crtB+dxs+ D. radiodurans R1 strain. Second, the effects of different UV wavelengths (UV-A, UV-B, and UV-C) on lycopene production were investigated. UV-C irradiation induced the highest production, resulting in a 69.9% increase in lycopene content [64.2 ± 3.2 mg/g dry cell weight (DCW)]. Extended UV-C irradiation further enhanced lycopene content up to 73.9 ± 2.3 mg/g DCW, a 95.5% increase compared to production without UV-C irradiation (37.8 ± 0.7 mg/g DCW).

Keywords

References

  1. Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. 1995. Intake of carotenoids and retino in relation to risk of prostate cancer. J. Natl. Cancer Inst. 87: 1767-1776. https://doi.org/10.1093/jnci/87.23.1767
  2. Kong K-W, Khoo H-E, Prasad KN, Ismail A, Tan C-P, Rajab NF. 2010. Revealing the power of the natural red pigment lycopene. Molecules 15: 959-987. https://doi.org/10.3390/molecules15020959
  3. Conn PF, Schalch W, Truscott GT. 1991. The singlet oxygen and carotenoid interaction. J. Photochem. Photobiol. B. 11: 41-47. https://doi.org/10.1016/1011-1344(91)80266-K
  4. Ma T, Shi B, Ye Z, Li X, Liu M, Chen Y, et al. 2019. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab. Eng. 52: 134-142. https://doi.org/10.1016/j.ymben.2018.11.009
  5. Sun T, Miao L, Li Q, Dai G, Lu F, Liu T, et al. 2014. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol. Lett. 36: 1515-1522. https://doi.org/10.1007/s10529-014-1543-0
  6. Kang CK, Jeong S-W, Yang JE, Choi YJ. 2020. High-yield production of lycopene from corn steep liquor and glycerol using the metabolically engineered Deinococcus radiodurans R1 Strain. J. Agric. Food Chem. 68: 5147-5153. https://doi.org/10.1021/acs.jafc.0c01024
  7. Ma T, Deng Z, Liu T. 2016. Microbial production strategies and applications of lycopene and other terpenoids. World. J. Microbiol. Biotechnol. 32: 15. https://doi.org/10.1007/s11274-015-1975-2
  8. Kang W, Ma T, Liu M, Qu Jiale, Liu Z, Zhang H, et al. 2019. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nat. Commun. 10: 4248. https://doi.org/10.1038/s41467-019-12247-w
  9. Lee J, Na D, Park J, et al. 2012. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8: 536-546. https://doi.org/10.1038/nchembio.970
  10. Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar GA. 2008. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J. Exp. Bot. 59: 1409-1418. https://doi.org/10.1093/jxb/ern048
  11. Bhosale P, Gadre RV. 2002. Manipulation of temperature and illumination conditions for enhanced β-carotene production by mutant 32 of Rhodotorula glutinis. Lett. Appl. Microbiol. 34: 349-353. https://doi.org/10.1046/j.1472-765X.2002.01095.x
  12. Mogedas B, Casal C, Forjan E, Vilchez C. 2009. β-Carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors. J. Biosci. Bioeng. 108: 47-51. https://doi.org/10.1016/j.jbiosc.2009.02.022
  13. Huang JJ, Cheung PC. 2011. +UVA treatment increases the degree of unsaturation in microalgal fatty acids and total carotenoid content in Nitzschia closterium (Bacillariophyceae) and Isochrysis zhangjiangensis (Chrysophyceae). Food Chem. 129: 783-791. https://doi.org/10.1016/j.foodchem.2011.05.021
  14. White AL and Jahnke LS. 2002. Contrasting effects of UV-A and UV-B on photosynthesis and photoprotection of β-carotene in two Dunaliella spp. Plant Cell Physiol. 43: 877-884. https://doi.org/10.1093/pcp/pcf105
  15. Ahmed F, Fanning K, Netzel M, Schenk PM. 2015. Induced carotenoid accumulation in Dunaliella salina and Tetraselmis suecica by plant hormones and UV-C radiation. Appl. Microbiol. Biotechnol. 99: 9407-9416. https://doi.org/10.1007/s00253-015-6792-x
  16. Liu LH, Zabaras D, Benett LE, Aguas P, Woonton BW. 2009. Effects of UV-C, red light, and sun light on the carotenoid content and physical qualities of tomato during postharvest storage. Food Chem. 115: 495-500. https://doi.org/10.1016/j.foodchem.2008.12.042
  17. Bravo S, Garcia-Alonso J, Martin-Pozuelo G, Gomez V, Santaella M, Navarro-Gonzalez I, et al. 2012. The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Res. Int. 49: 296-302. https://doi.org/10.1016/j.foodres.2012.07.018
  18. Jeong S-W, Yang JE, Im S, Choi YJ. 2017. Development of Cre-lox based multiple knockout system in Deinococcus radiodurans R1. Korean J. Chem. Eng. 34: 1728-1733. https://doi.org/10.1007/s11814-017-0082-5
  19. Jeong S-W, Kang CK, Choi YJ. 2018. Metabolic Engineering of Deinococcus radiodurans for the production of phytoene. J. Microbiol. Biotechnol. 28: 1691-1699. https://doi.org/10.4014/jmb.1808.08019
  20. Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, et al. 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. Rev. 65: 44-79. https://doi.org/10.1128/MMBR.65.1.44-79.2001
  21. Yamashiro T, Murata K, Kawai S. 2017. Extremely high intracellular concentration of glucose-6-phosphate and NAD (H) in Deinococcus radiodurans. Extremophiles 21: 399-407. https://doi.org/10.1007/s00792-016-0913-z
  22. Slade D, Radman M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75: 133-191. https://doi.org/10.1128/MMBR.00015-10
  23. Yoon S-H, Kim J-E, Lee S-H, Park H-M, Choi M-S, Kim J-Y, et al. 2007. Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis. Appl. Microbiol. Biotechnol. 74: 131-139. https://doi.org/10.1007/s00253-006-0623-z
  24. Yasui H, Sakurai H. 2000. Chemiluminescent detection and imaging of reactive oxygen species in live mouse skin exposed to UVA. Biochem. Biophys. Res. Commun. 269: 131-136. https://doi.org/10.1006/bbrc.2000.2254
  25. Masaki H, Atsumi T, Sakurai H. 1995. Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation. Biochem. Biophys. Res. Commun. 206: 474-479. https://doi.org/10.1006/bbrc.1995.1067
  26. Zhang S, He Y, Sen B, Wang G. 2000. Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. Bioresour. Technol. 307: 123234. https://doi.org/10.1016/j.biortech.2020.123234

Cited by

  1. Metabolic Engineering of Extremophilic Bacterium Deinococcus radiodurans for the Production of the Novel Carotenoid Deinoxanthin vol.9, pp.1, 2020, https://doi.org/10.3390/microorganisms9010044