DOI QR코드

DOI QR Code

Immunomodulatory Activities of Body Wall Fatty Acids Extracted from Halocynthia aurantium on RAW264.7 Cells

  • Monmai, Chaiwat (East Coast Life Sciences Institute, Gangneung-Wonju National University) ;
  • Jang, A-Yeong (Department of Wellness-Bio Industry, Gangneung-Wonju National University) ;
  • Kim, Ji-Eun (Department of Wellness-Bio Industry, Gangneung-Wonju National University) ;
  • Lee, Sang-Min (Department of Wellness-Bio Industry, Gangneung-Wonju National University) ;
  • You, SangGuan (East Coast Life Sciences Institute, Gangneung-Wonju National University) ;
  • Kang, SeokBeom (Citrus Research Station, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Tae Ho (Department of Power Plant, Korea Polytechnic College (Mokpo Campus)) ;
  • Park, Woo Jung (East Coast Life Sciences Institute, Gangneung-Wonju National University)
  • 투고 : 2020.07.24
  • 심사 : 2020.09.26
  • 발행 : 2020.12.28

초록

Tunicates are known to contain biologically active materials and one species in particular, the sea peach (Halocynthia aurantium), has not been thoroughly studied. In this study we aimed to analyze the fatty acids profile of the H. aurantium body wall and its immunomodulatory effects on RAW264.7 macrophage-like cells. The fatty acids were classified into three categories: saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and polyunsaturated fatty acids (PUFAs). Omega-3 fatty acid content, including EPA and DHA, was higher than omega-6 fatty acids. H. aurantium body wall fatty acids exhibited enhanced immune response and anti-inflammatory effects on RAW264.7 macrophage-like cells. Under normal conditions, fatty acids significantly increase nitric oxide (NO) and PGE2 production in a dose-dependent manner, thereby improving the immune response. On the other hand, in LPS-treated RAW264.7 cells, fatty acids significantly decreased nitric oxide (NO) and PGE2 production in a dose-dependent manner, thereby enhancing anti-inflammatory effects. Fatty acids transcriptionally control the expression of the immune-associated genes, iNOS, IL-1β, IL-6, COX-2, and TNF-α, via the MAPK and NF-κB signaling cascades in RAW264.7 cells. However, in LPS-stimulated RAW264.7 cells, H. aurantium body wall fatty acids significantly inhibited expression of inflammatory cytokine; similarly, production of COX-2 and PGE2 was inhibited. The results of our present study provide insight into the immune-improving and anti-inflammatory effects of H. aurantium body wall fatty acids on macrophages. In addition, our study demonstrates that H. aurantium body wall is a potential source of immune regulatory components.

키워드

참고문헌

  1. Fang Q, Wang JF, Zha XQ, Cui SH, Cao L, Luo JP. 2015. Immunomodulatory activity on macrophage of a purified polysaccharide extracted from Laminaria japonica. Carbohydr. Polym. 134: 66-73. https://doi.org/10.1016/j.carbpol.2015.07.070
  2. Hooper LV, Littman DR, Macpherson AJ. 2012. Interactions between the microbiota and the immune system. Science 336: 1268-1273. https://doi.org/10.1126/science.1223490
  3. Taniguchi Y, Yoshioka N, Nakata K, Nishizawa T, Inagawa H, Kohchi C, et al. 2009. Mechanism for maintaining homeostasis in the immune system of the intestine. Anticancer Res. 29: 4855-4860.
  4. Gordon S, Martinez FO. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593-604. https://doi.org/10.1016/j.immuni.2010.05.007
  5. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75: 163-189. https://doi.org/10.1189/jlb.0603252
  6. Gopinath VK, Musa M, Samsudin AR, Sosroseno W. 2006. Role of interleukin-1beta and tumour necrosis factor-alpha on hydroxyapatite-induced phagocytosis by murine macrophages (RAW264.7 cells). Br. J. Biomed. Sci. 63: 176-178. https://doi.org/10.1080/09674845.2006.11978094
  7. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, et al. 1997. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 6: 315-325. https://doi.org/10.1016/S1074-7613(00)80334-9
  8. Rahat MA, Hemmerlein B. 2013. Macrophage-tumor cell interactions regulate the function of nitric oxide. Front. Physiol. 4: 144. https://doi.org/10.3389/fphys.2013.00144
  9. Ford JH. 2010. Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging. Age (Dordrecht, Netherlands) 32: 231-237. https://doi.org/10.1007/s11357-009-9128-x
  10. Superko HR, Superko AR, Lundberg GP, Margolis B, Garrett BC, Nasir K, et al. 2014. Omega-3 fatty acid blood levels clinical significance update. Curr. Cardiovasc. Risk Rep. 8: 407-414. https://doi.org/10.1007/s12170-014-0407-4
  11. Zheng JS, Huang T, Yang J, Fu YQ, Li D. 2012. Marine N-3 polyunsaturated fatty acids are inversely associated with risk of type 2 diabetes in Asians: a systematic review and meta-analysis. PLoS One 7: e44525-44538. https://doi.org/10.1371/journal.pone.0044525
  12. Wolfe LS. 1982. Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other derivatives of carbon-20 unsaturated fatty acids. J. Neurochem. 38: 1-14. https://doi.org/10.1111/j.1471-4159.1982.tb10847.x
  13. Calder PC. 2013. n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc. Nutr. Soc. 72: 326-336. https://doi.org/10.1017/S0029665113001031
  14. Davidson J, Rotondo D, Rizzo MT, Leaver HA. 2012. Therapeutic implications of disorders of cell death signalling: membranes, micro-environment, and eicosanoid and docosanoid metabolism. Br. Pharmacol. 166: 1193-1210. https://doi.org/10.1111/j.1476-5381.2012.01900.x
  15. Adam O, Beringer C, Kless T, Lemmen C, Adam A, Wiseman M, et al. 2003. Anti-inflammatory effects of a low arachidonic acid diet and fish oil in patients with rheumatoid arthritis. Rheumatol. Int. 23: 27-36. https://doi.org/10.1007/s00296-002-0234-7
  16. Calder PC. 2017. Omega-3 fatty acids and inflammatory processes: from molecules to man. Biochem. Soc. Trans. 45: 1105-1115. https://doi.org/10.1042/BST20160474
  17. Jeong BY, Ohshima T, Koizumi C. 1996. Hydrocarbon chain distribution of ether phospholipids of the ascidian Halocynthia roretzi and the sea urchin Strongylocentrotus intermedius. Lipids 31: 9-18. https://doi.org/10.1007/BF02522404
  18. Vysotskii MV, Ota T, Takagi T. 1992. n-3 polyunsaturated fatty acids in lipids of ascidian Halocynthia roretzi. Nippon Suisan. Gakk. 58: 953-958. https://doi.org/10.2331/suisan.58.953
  19. Murakami A, Nakashima M, Koshiba T, Maoka T, Nishino H, Yano M, et al. 2000. Modifying effects of carotenoids on superoxide and nitric oxide generation from stimulated leukocytes. Cancer Lett. 149: 115-123. https://doi.org/10.1016/S0304-3835(99)00351-1
  20. Nathan C. 2002. Points of control in inflammation. Nature 420: 846-852. https://doi.org/10.1038/nature01320
  21. Konishi I, Hosokawa M, Sashima T, Maoka T, Miyashita K. 2008. Suppressive effects of alloxanthin and diatoxanthin from Halocynthia roretzi on LPS-induced expression of pro-inflammatory genes in RAW264.7 cells. J. Oleo Sci. 57: 181-189. https://doi.org/10.5650/jos.57.181
  22. Konishi I, Hosokawa M, Sashima T, Kobayashi H, Miyashita K. 2006. Halocynthiaxanthin and fucoxanthinol isolated from Halocynthia roretzi induce apoptosis in human leukemia, breast and colon cancer cells. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 142: 53-59. https://doi.org/10.1016/j.cbpc.2005.10.005
  23. Mikami N, Hosokawa M, Miyashita K. 2010. Effects of sea squirt (Halocynthia roretzi) lipids on white adipose tissue weight and blood glucose in diabetic/obese KK-Ay mice. Mol. Med. Rep. 3: 449-453. https://doi.org/10.3892/mmr_00000278
  24. Monmai C, Go SH, Shin IS, You SG, Lee H, Kang S, et al. 2018. Immune enhancement effect of Asterias amurensis fatty acids through NF-kappaB and MAPK pathways on RAW 264.7 cells. J. Microbiol. Biotechnol. 28: 349-356. https://doi.org/10.4014/jmb.1709.09005
  25. Lee C, Park MW, Lee CS, Kim SK, Kim WK. 2009. Effects of temperature and salinity on development of sea peach Halocynthia aurantium. J. Environ. Sci. Int. 18: 1171-1179. https://doi.org/10.5322/JES.2009.18.10.1171
  26. Gotshall D. 2005. Guide to Marine Invertebrates: Alaska to Baja California, pp. 117. 2 Ed. Sea Challengers, Monterey, CA, USA.
  27. Garces R, Mancha M. 1993. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 211: 139-143. https://doi.org/10.1006/abio.1993.1244
  28. Park WJ, Kothapalli KS, Lawrence P, Tyburczy C, Brenna JT. 2009. An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Delta8-desaturates 20:2n-6 and 20:3n-3. J. Lipid Res. 50: 1195-1202. https://doi.org/10.1194/jlr.M800630-JLR200
  29. Cao RA, Lee Y, You S. 2014. Water soluble sulfated-fucans with immune-enhancing properties from Ecklonia cava. Int. J. Biol. Macromol. 67: 303-311. https://doi.org/10.1016/j.ijbiomac.2014.03.019
  30. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126: 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  31. Kim JB, Han AR, Park EY, Kim JY, Cho W, Lee J, et al. 2007. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30: 2345-2351. https://doi.org/10.1248/bpb.30.2345
  32. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  33. Narayanan BA, Narayanan NK, Simi B, Reddy BS. 2003. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res. 63: 972-979.
  34. Lechner M, Lirk P, Rieder J. 2005. Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin. Cancer Biol. 15: 277-289. https://doi.org/10.1016/j.semcancer.2005.04.004
  35. De Pablo Manuel A, De Cienfuegos Gerardo A. 2000. Modulatory effects of dietary lipids on immune system functions. Immunol. Cell Biol. 78: 31-39. https://doi.org/10.1046/j.1440-1711.2000.00875.x
  36. Guertin MH, Robitaille K, Pelletier JF, Duchesne T, Julien P, Savard J, et al. 2018. Effects of concentrated long-chain omega-3 polyunsaturated fatty acid supplementation before radical prostatectomy on prostate cancer proliferation, inflammation, and quality of life: study protocol for a phase IIb, randomized, double-blind, placebo-controlled trial. BMC Cancer 18: 64-73. https://doi.org/10.1186/s12885-017-3979-9
  37. Lee JM, Lee H, Kang S, Park WJ. 2016. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 8: 23-35. https://doi.org/10.3390/nu8010023
  38. Olefsky JM, Glass CK. 2010. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72: 219-246. https://doi.org/10.1146/annurev-physiol-021909-135846
  39. Yi H, Yu C, Zhang H, Song D, Jiang D, Du H, et al. 2015. Cathelicidin-BF suppresses intestinal inflammation by inhibiting the nuclear factor-κB signaling pathway and enhancing the phagocytosis of immune cells via STAT-1 in weanling piglets. Int. Immunopharmacol. 28: 61-69. https://doi.org/10.1016/j.intimp.2015.05.034
  40. Baeuerle PA, Baltimore D. 1996. NF-kappa B: ten years after. Cell 87: 13-20. https://doi.org/10.1016/S0092-8674(00)81318-5
  41. Tak PP, Firestein GS. 2001. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107: 7-11. https://doi.org/10.1172/JCI11830
  42. Cargnello M, Roux PP. 2011. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75: 50-83. https://doi.org/10.1128/MMBR.00031-10
  43. Li YY, Hsieh LL, Tang RP, Liao SK, Yeh KY. 2009. Interleukin-6 (IL-6) released by macrophages induces IL-6 secretion in the human colon cancer HT-29 cell line. Hum. Immunol. 70: 151-158. https://doi.org/10.1016/j.humimm.2009.01.004
  44. Han L, Song S, Niu Y, Meng M, Wang C. 2017. Eicosapentaenoic acid (EPA) induced macrophages activation through GPR120-mediated Raf-ERK1/2-IKKbeta-NF-kappaB p65 signaling pathways. Nutrients 9: 937-952. https://doi.org/10.3390/nu9090937
  45. Novak TE, Babcock TA, Jho DH, Helton WS, Espat NJ. 2003. NF-kappa B inhibition by omega -3 fatty acids modulates LPSstimulated macrophage TNF-alpha transcription. Am. J. Physiol. Lung Cell Mol. Physiol. 284: L84-89. https://doi.org/10.1152/ajplung.00077.2002
  46. Zhao Y, Joshi-Barve S, Barve S, Chen LH. 2004. Eicosapentaenoic acid prevents LPS-induced TNF-alpha expression by preventing NF-kappaB activation. J. Am. Coll. Nutr. 23: 71-78. https://doi.org/10.1080/07315724.2004.10719345