References
- Falagas ME, Kasiakou SK, Saravolatz LD. 2005. Colistin: the revival of polymyxins for the management of multidrug-resistant gramnegative bacterial infections. Clin. Infect. Dis. 40: 1333-1341. https://doi.org/10.1086/429323
- Javan AO, Shokouhi S, Sahraei Z. 2015. A review on colistin nephrotoxicity. Eur. J. Clin. Pharmacol. 71: 801-810. https://doi.org/10.1007/s00228-015-1865-4
- Yahav D, Farbman L, Leibovici L, Paul M. 2012. Colistin: new lessons on an old antibiotic. Clin. Microbiol. Infect. 18: 18-29. https://doi.org/10.1111/j.1469-0691.2011.03734.x
- Poirel L, Jayol A, Nordmann P. 2017. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 30: 557-596. https://doi.org/10.1128/CMR.00064-16
- Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, et al. 2013. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 13: 785-796. https://doi.org/10.1016/S1473-3099(13)70190-7
- Jeannot K, Bolard A, Plesiat P. 2017. Resistance to polymyxins in gram-negative organisms. Int. J. Antimicrob. Agents. 49: 526-535. https://doi.org/10.1016/j.ijantimicag.2016.11.029
- Baron S, Hadjadj L, Rolain J-M, Olaitan AO. 2016. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int. J. Antimicrob. Agents. 48: 583-591. https://doi.org/10.1016/j.ijantimicag.2016.06.023
- Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16: 161-168. https://doi.org/10.1016/S1473-3099(15)00424-7
- Forde BM, Zowawi HM, Harris PN, Roberts L, Ibrahim E, Shaikh N, et al. 2018. Discovery of mcr-1-mediated colistin resistance in a highly virulent Escherichia coli lineage. mSphere. 3: e00486-00418.
- Du H, Chen L, Tang Y-W, Kreiswirth BN. 2016. Emergence of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae. Lancet Infect. Dis. 16: 287-288. https://doi.org/10.1016/S1473-3099(16)00056-6
- Hinchliffe P, Yang QE, Portal E, Young T, Li H, Tooke CL, et al. 2017. Insights into the mechanistic basis of plasmid-mediated colistin resistance from crystal structures of the catalytic domain of MCR-1. Sci. Rep. 7: 39392. https://doi.org/10.1038/srep39392
- Matamoros S, Van Hattem JM, Arcilla MS, Willemse N, Melles DC, Penders J, et al. 2017. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci. Rep. 7: 15364. https://doi.org/10.1038/s41598-017-15539-7
- Li R, Xie M, Lv J, Wai-Chi Chan E, Chen S. 2017. Complete genetic analysis of plasmids carrying mcr-1 and other resistance genes in an Escherichia coli isolate of animal origin. J. Antimicrob. Chemother. 72: 696-699.
- Skov RL, Monnet DL. 2016. Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill. 21: 30155.
- Kim ES, Chong YP, Park S-J, Kim M-N, Kim S-H, Lee S-O, et al. 2017. Detection and genetic features of MCR-1-producing plasmid in human Escherichia coli infection in South Korea. Diagn. Microbiol. Infect. Dis. 89: 158-160. https://doi.org/10.1016/j.diagmicrobio.2017.06.020
- Lim S-K, Kang HY, Lee K, Moon D-C, Lee H-S, Jung S-C. 2016. First detection of the mcr-1 gene in Escherichia coli isolated from livestock between 2013 and 2015 in South Korea. Antimicrob. Agents Chemother. 60: 6991-6993. https://doi.org/10.1128/AAC.01472-16
- Oh S-S, Song J, Kim J, Shin J. 2020. Increasing prevalence of multidrug-resistant mcr-1-positive Escherichia coli isolates from fresh vegetables and healthy food animals in South Korea. Int. J. Infect. Dis. 92: 53-55. https://doi.org/10.1016/j.ijid.2019.12.025
- Kim J, Hwang BK, Choi H, Wang Y, Choi SH, Ryu S, et al. 2019. Characterization of mcr-1-harboring plasmids from pan drugresistant Escherichia coli strains isolated from retail raw chicken in South Korea. Microorganisms. 7: 344. https://doi.org/10.3390/microorganisms7090344
- Koo HJ, Woo GJ. 2012. Characterization of antimicrobial resistance of Escherichia coli recovered from foods of animal and fish origin in Korea. J. Food Prot. 75: 966-972. https://doi.org/10.4315/0362-028X.JFP-11-003
- EUCAST. 2020. Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0. Available from http://www.eucast.org. Accessed Jan. 20, 2020.
- CLSI. 2018. Performance Standards for Antimicrobial Susceptibility Testing, CLSI supplement M100. 28th ed. Clinical and Laboratory Standards Institute, Wayne, PA, USA
- NARMS. 2020. Antimicrobial agents used for susceptibility testing for E. coli isolates. Available from https://www.cdc.gov/narms/antibiotics-tested.html. Accessed Jan. 20, 2020.
- Shin SW, Shin MK, Jung M, Belaynehe KM, Yoo HS. 2015. Prevalence of antimicrobial resistance and transfer of tetracycline resistance genes in Escherichia coli isolates from beef cattle. Appl. Environ. Microbiol. 81: 5560-5566. https://doi.org/10.1128/AEM.01511-15
- Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33: 2233-2239. https://doi.org/10.1128/jcm.33.9.2233-2239.1995
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. https://doi.org/10.1089/cmb.2012.0021
- Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, et al. 2014. In silico detection and typing of plasmids using plasmid finder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58: 3895-3903. https://doi.org/10.1128/AAC.02412-14
- Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, et al. 2012. Multilocus sequence typing of total-genomesequenced bacteria. J. Clin. Microbiol. 50: 1355-1361. https://doi.org/10.1128/JCM.06094-11
- Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67: 2640-2644. https://doi.org/10.1093/jac/dks261
- Alikhan N-F, Petty NK, Ben Zakour NL, Beatson SA. 2011. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. BMC Genomics. 12: 402. https://doi.org/10.1186/1471-2164-12-402
- Sergeant E. 2018. Epitools epidemiological calculators. Available from http://epitools.ausvet.com.au. Accessed Feb. 21, 2018.
- Kim S, Kim H, Kim Y, Kim M, Kwak H, Ryu S. 2020. Whole-genome sequencing-based characteristics in extended-spectrum betalactamase-producing Escherichia coli isolated from retail meats in Korea. Microorganisms. 8: 508. https://doi.org/10.3390/microorganisms8040508
- Clemente L, Manageiro V, Correia I, Amaro A, Albuquerque T, Themudo P, et al. 2019. Revealing mcr-1-positive ESBL-producing Escherichia coli strains among Enterobacteriaceae from food-producing animals (bovine, swine and poultry) and meat (bovine and swine), Portugal, 2010-2015. Int. J. Food Microbiol. 296: 37-42. https://doi.org/10.1016/j.ijfoodmicro.2019.02.006
- Ohsaki Y, Hayashi W, Saito S, Osaka S, Taniguchi Y, Koide S, et al. 2017. First detection of Escherichia coli harboring mcr-1 gene from retail domestic chicken meat in Japan. Jpn. J. Infect. Dis. 70: 590-592. https://doi.org/10.7883/yoken.JJID.2016.572
- Schrauwen EJ, Huizinga P, van Spreuwel N, Verhulst C, Kluytmans-van den Bergh MF, Kluytmans JA. 2017. High prevalence of the mcr-1 gene in retail chicken meat in the Netherlands in 2015. Antimicrob. Resist. Infect. Control 6: 83. https://doi.org/10.1186/s13756-017-0242-8
- Monte DF, Mem A, Fernandes MR, Cerdeira L, Esposito F, Galvao JA, et al. 2017. Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America. Antimicrob. Agents Chemother. 61: e02718-02716.
- Irrgang A, Roschanski N, Tenhagen B-A, Grobbel M, Skladnikiewicz-Ziemer T, Thomas K, et al. 2016. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010-2015. PLoS One 11: e0159863. https://doi.org/10.1371/journal.pone.0159863
- Korea Animal Health Products Association (KAHPA), Animal and Plant Quarantine Agency (APQA), National Institute of Food and Drug Safety Evaluation (NIFDS). 2020. The sales of antimicrobials (estimation) in animals and fisheries. In National antibiotics use in food animals and monitoring of antimicrobial resistance in 2018. Available from http://ebook.qia.go.kr/20190918_104137. Accessed March 29, 2020.
- Yoon E-J, Hong JS, Yang JW, Lee KJ, Lee H, Jeong SH. 2018. Detection of mcr-1 plasmids in Enterobacteriaceae isolates from human specimens: Comparison with those in Escherichia coli isolates from livestock in Korea. Ann. Lab. Med. 38: 555-562. https://doi.org/10.3343/alm.2018.38.6.555
- Lee J-Y, Lim S-K, Choi Y, Moon D-C, Shin J, Ko KS. 2018. Whole sequences and characteristics of mcr-1-harboring plasmids of Escherichia coli strains isolated from livestock in South Korea. Microb. Drug. Resist. 24: 489-492. https://doi.org/10.1089/mdr.2017.0369
- Moreno LZ, Gomes VT, Moreira J, de Oliveira CH, Peres BP, Silva APS, et al. 2019. First report of mcr-1-harboring Salmonella enterica serovar Schwarzengrund isolated from poultry meat in Brazil. Diagn. Microbiol. Infect. Dis. 93: 376-379. https://doi.org/10.1016/j.diagmicrobio.2018.10.016
- Roschanski N, Roesler U, Guenther S, Imirzalioglu C, Falgenhauer L, Chakraborty T, et al. 2017. Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms. J. Antimicrob. Chemother. 72: 1289-1292.
- Roschanski N, Falgenhauer L, Grobbel M, Guenther S, Kreienbrock L, Imirzalioglu C, et al. 2017. Retrospective survey of mcr-1 and mcr-2 in German pig-fattening farms, 2011-2012. Int. J. Antimicrob. Agents. 50: 266-271. https://doi.org/10.1016/j.ijantimicag.2017.03.007
- Valerie DT, Laurent P, Patrice N. 2017. Transferability of the mcr-1 colistin resistance gene. Microb. Drug. Resist. 23: 813-814. https://doi.org/10.1089/mdr.2016.0191
- Noller AC, McEllistrem MC, Stine OC, Morris J, J. Glenn, Boxrud DJ, Dixon B, et al. 2003. Multilocus sequence typing reveals a lack of diversity among Escherichia coli O157:H7 isolates that are distinct by pulsed-field gel electrophoresis. J. Clin. Microbiol. 41: 675-679. https://doi.org/10.1128/JCM.41.2.675-679.2003
- El Garch F, De Jong A, Bertrand X, Hocquet D, Sauget M. 2018. mcr-1-like detection in commensal Escherichia coli and Salmonella spp. from food-producing animals at slaughter in Europe. Vet. Microbiol. 213: 42-46. https://doi.org/10.1016/j.vetmic.2017.11.014
- Wang X, Wang Y, Zhou Y, Li J, Yin W, Wang S, et al. 2018. Emergence of a novel mobile colistin resistance gene, mcr-8, in NDMproducing Klebsiella pneumoniae. Emerg. Microb. Infect. 7: 122. https://doi.org/10.1038/s41426-018-0124-z
- Yoo JS, Kim HM, Koo HS, Yang JW, Yoo JI, Kim HS, et al. 2013. Nosocomial transmission of NDM-1-producing Escherichia coli ST101 in a Korean hospital. J. Antimicrob. Chemother. 68: 2170-2172. https://doi.org/10.1093/jac/dkt126
Cited by
- Plasmid Mediated mcr-1.1 Colistin-Resistance in Clinical Extraintestinal Escherichia coli Strains Isolated in Poland vol.12, 2020, https://doi.org/10.3389/fmicb.2021.547020