참고문헌
- Center for Disease Control and Prevention (CDC). 2020. Foodborne germs and illnesses. Available from https://www.cdc.gov/foodsafety/foodborne-germs.html. Accessed Mar. 18, 2020.
- Meeslip N, Mesil N. 2019. Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Sci. Biotechnol. 28: 289-296. https://doi.org/10.1007/s10068-018-0448-4
- Song H, Lee SY. 2020. Resistance of pathogenic biofilms on glass fiber filters formed under different conditions. Food Sci. Biotechnol. 29: 1241-1250. https://doi.org/10.1007/s10068-020-00773-z
- Hossain MI, Mizan MFR, Ashrafudoulla M, Nahar S, Joo HJ, Jahid IK, et al. 2020. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. LWT-Food Sci. Technol. 118: 108864. https://doi.org/10.1016/j.lwt.2019.108864
- Nguyen HDN, Yang YS, Yuk HG. 2014. Biofilm formation of Salmonella Typhimurium on stainless steel and acrylic surfaces as affected by temperature and pH level. LWT-Food Sci. Technol. 55: 383-388. https://doi.org/10.1016/j.lwt.2013.09.022
- Cao Y, Naseri M, He Y, Xu C, Walsh LJ, Ziora ZM. 2020. Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. J. Glob. Antimicrob. Resist. 21: 445-451. https://doi.org/10.1016/j.jgar.2019.11.012
- Center for Disease Control and Prevention (CDC). 2011. Burden of Foodborne Illness: Findings. Available from https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html. Accessed Nov. 05, 2018.
- Farha AK, Yang QQ, Kim G, Zhang D, Mavumengwana V, Habimana O, et al. 2020. Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control 112: 107154. https://doi.org/10.1016/j.foodcont.2020.107154
- Olia AHG, Ghahremani M, Ahmadi A, Sharifi Y. 2020. Comparison of biofilm production and virulence gene distribution among community-and hospital-acquired Staphylococcus aureus isolates from northwestern Iran. Infect. Genet. Evol. 81: 104262. https://doi.org/10.1016/j.meegid.2020.104262
- Pontes EKU, Melo HM, Nogueira JWA, Firmino NCS, de Carvalho MG, Catunda FEA, Cavalcant TTA. 2019. Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus. Food Sci. Biotechnol. 28: 633-639. https://doi.org/10.1007/s10068-018-0502-2
- Olszewska MA, Gedas A, Simoes M. 2020. Antimicrobial polyphenol-rich extracts: applications and limitations in the food industry. Food. Res. Int. 134: 109214. https://doi.org/10.1016/j.foodres.2020.109214
- Saidi N, Owlia P, Marashi SMA, Saderi H. 2019. Inhibitory effect of probiotic yeast Saccharomyces cerevisiae on biofilm formation and expression of α-hemolysin and enterotoxin A genes of Staphylococcus aureus. Iran J. Microbiol. 11: 246-254.
- Yan X, Gu S, Cui X, Shi Y, Wen S, Chen H, Ge J. 2019. Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microb. Pathog. 127: 12-20. https://doi.org/10.1016/j.micpath.2018.11.039
- Song YJ, Yu HH, Kim YJ, Lee NK, Paik HD. 2019. Anti-biofilm activity of grapefruit seed extract against Staphylococcus aureus and Escherichia coli. J. Microbiol. Biotechnol. 29: 1177-1183. https://doi.org/10.4014/jmb.1905.05022
- Cui T, Bai F, Sun M, Lv X, Li X, Zhang D, Du H. 2020. Lactobacillus crustorum ZHG 2-1 as novel quorum-quenching bacteria reducing virulence factors and biofilms formation of Pseudomonas aeruginosa. LWT-Food Sci. Technol. 117: 108696 https://doi.org/10.1016/j.lwt.2019.108696
- Wang N, Yuan L, Sadiq FA, He G. 2019. Inhibitory effect of Lactobacillus plantarum metabolites against biofilm formation by Bacillus licheniformis isolated from milk powder products. Food Control 106: 106721. https://doi.org/10.1016/j.foodcont.2019.106721
- Kaur S, Sharma P, Kalia N, Singh J, Kaur S. 2018. Anti-biofilm properties of the fecal probiotic Lactobacilli against Vibrio spp. Front. Cell. Infect. Microbiol. 8: 120. https://doi.org/10.3389/fcimb.2018.00120
- Braiek, OB, Merghni A, Smaoui S, Mastouri M. 2019. Enterococcus lactis Q1 and 4CP3 strains from raw shrimps: Potential of antioxidant capacity and anti-biofilm activity against methicillin-resistant Staphylococcus aureus strains. LWT-Food Sci. Technol. 102: 15-21. https://doi.org/10.1016/j.lwt.2018.11.095
- Hong JY, Lee NK, Yi SH, Hong SP, Paik HD. 2019. Physicochemical features and microbial community of milk kefir using a potential probiotic Saccharomyces cerevisiae KU200284. J. Dairy Sci. 102: 10845-10849. https://doi.org/10.3168/jds.2019-16384
- Lee NK, Hong JY, Yi SH, Hong SP, Lee JE, Paik HD. 2019. Bioactive compounds of probiotic Saccharomyces cerevisiae strains isolated from cucumber jangajji. J. Funct. Foods 58: 324-329. https://doi.org/10.1016/j.jff.2019.04.059
- de Lima MDSF, de Souza KMS, Albuquerque WWC, Teixeira JAC, Cavalcanti MTH, Porto ALF. 2017. Saccharomyces cerevisiae from Brazilian kefir-fermented milk: An in vitro evaluation of probiotic properties. Microb. Pathog. 110: 670-677. https://doi.org/10.1016/j.micpath.2017.05.010
- Fakruddin MD, Hossain MN, Ahmed MM. 2017. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complement. Altern. Med. 17: 64. https://doi.org/10.1186/s12906-017-1591-9
- Moslehi-Jenabian S, Lindegaard L, Jespersen L. 2010. Beneficial effects of probiotic and food borne yeasts on human health. Nutrients 2: 449-473. https://doi.org/10.3390/nu2040449
- Yu HH, Song YJ, Yu HS, Lee NK, Paik HD. 2020. Investigating the antimicrobial and antibiofilm effects of cinnamaldehyde against Campylobacter spp. using cell surface characteristics. J. Food Sci. 85: 157-164. https://doi.org/10.1111/1750-3841.14989
- Islam B, Khan SN, Haque I, Alam M, Mushfiq M, Khan AU. 2008. Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba. J. Antimicrob. Chemother. 62: 751-757. https://doi.org/10.1093/jac/dkn253
- Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y. 2015. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability. Microb. Biotechnol. 8: 392-403. https://doi.org/10.1111/1751-7915.12155
- Heggers JP, Cottingham J, Gusman J, Reagor L, McCoy L, Carino E, et al. 2002. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity. J. Altern. Complement. Med. 8: 333-340. https://doi.org/10.1089/10755530260128023
- Kang J, Jin W, Wang J, Sun Y, Wu X, Liu L. 2019. Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. LWT-Food Sci. Technol. 101: 639-645. https://doi.org/10.1016/j.lwt.2018.11.093
- Ghorbani Z, Owlia P, Marashi MA, Saderi H. 2018. Effect of supernatant and cell lysate extracts of Saccharomyces cerevisiae on biofilm and alginate production by Pseudomonas aeruginosa. Iran J. Med. Microbiol. 12: 189-198. https://doi.org/10.30699/ijmm.12.3.189
- Kim BR, Bae YM, Hwang JH, Lee SY. 2016. Biofilm formation and cell surface properties of Staphylococcus aureus isolates from various sources. Food Sci. Biotechnol. 25: 643-648. https://doi.org/10.1007/s10068-016-0090-y
- Kouidhi B, Zmantar T, Hentati H, Bakhrouf A. 2010. Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries. Microb. Pathog. 49: 14-22. https://doi.org/10.1016/j.micpath.2010.03.007
- Vijayakumar K, Bharathidasan V, Manigandan V, Jeyapragash D. 2020. Quebrachitol inhibits biofilm formation and virulence production against methicillin-resistant Staphylococcus aureus. Microb. Pathog. 149: 104286. https://doi.org/10.1016/j.micpath.2020.104286
- Ates O. 2015. Systems biology of microbial exopolysaccharides production. Front. Bioeng. Biotech. 3: 200. https://doi.org/10.3389/fbioe.2015.00200
- Liu M, Wu X, Li J, Liu L, Zhang R, Shao D, Du X. 2017. The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon. Food Control 73: 613-618. https://doi.org/10.1016/j.foodcont.2016.09.015
- Bai JR, Zhong K, Wu YP, Elena G, Gao H. 2019. Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control 95: 327-333. https://doi.org/10.1016/j.foodcont.2018.08.020
- Cui H, Zhang C, Li C, Lin L. 2020. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. LWT-Food Sci. Technol. 122: 109057. https://doi.org/10.1016/j.lwt.2020.109057