DOI QR코드

DOI QR Code

Anti-Biofilm Activity of Cell-Free Supernatant of Saccharomyces cerevisiae against Staphylococcus aureus

  • Kim, Yeon Jin (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Yu, Hwan Hee (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Park, Yeong Jin (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Lee, Na-Kyoung (Department of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Paik, Hyun-Dong (Department of Food Science and Biotechnology of Animal Resources, Konkuk University)
  • Received : 2020.08.26
  • Accepted : 2020.09.18
  • Published : 2020.12.28

Abstract

Staphylococcus aureus is one of the most common microorganisms and causes foodborne diseases. In particular, biofilm-forming S. aureus is more resistant to antimicrobial agents and sanitizing treatments than planktonic cells. Therefore, this study aimed to investigate the anti-biofilm effects of cell-free supernatant (CFS) of Saccharomyces cerevisiae isolated from cucumber jangajji compared to grapefruit seed extract (GSE). CFS and GSE inhibited and degraded S. aureus biofilms. The adhesion ability, auto-aggregation, and exopolysaccharide production of CFS-treated S. aureus, compared to those of the control, were significantly decreased. Moreover, biofilm-related gene expression was altered upon CFS treatment. Scanning electron microscopy images confirmed that CFS exerted anti-biofilm effects against S. aureus. Therefore, these results suggest that S. cerevisiae CFS has anti-biofilm potential against S. aureus strains.

Keywords

References

  1. Center for Disease Control and Prevention (CDC). 2020. Foodborne germs and illnesses. Available from https://www.cdc.gov/foodsafety/foodborne-germs.html. Accessed Mar. 18, 2020.
  2. Meeslip N, Mesil N. 2019. Effect of microbial sanitizers for reducing biofilm formation of Staphylococcus aureus and Pseudomonas aeruginosa on stainless steel by cultivation with UHT milk. Food Sci. Biotechnol. 28: 289-296. https://doi.org/10.1007/s10068-018-0448-4
  3. Song H, Lee SY. 2020. Resistance of pathogenic biofilms on glass fiber filters formed under different conditions. Food Sci. Biotechnol. 29: 1241-1250. https://doi.org/10.1007/s10068-020-00773-z
  4. Hossain MI, Mizan MFR, Ashrafudoulla M, Nahar S, Joo HJ, Jahid IK, et al. 2020. Inhibitory effects of probiotic potential lactic acid bacteria isolated from kimchi against Listeria monocytogenes biofilm on lettuce, stainless-steel surfaces, and MBEC™ biofilm device. LWT-Food Sci. Technol. 118: 108864. https://doi.org/10.1016/j.lwt.2019.108864
  5. Nguyen HDN, Yang YS, Yuk HG. 2014. Biofilm formation of Salmonella Typhimurium on stainless steel and acrylic surfaces as affected by temperature and pH level. LWT-Food Sci. Technol. 55: 383-388. https://doi.org/10.1016/j.lwt.2013.09.022
  6. Cao Y, Naseri M, He Y, Xu C, Walsh LJ, Ziora ZM. 2020. Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria. J. Glob. Antimicrob. Resist. 21: 445-451. https://doi.org/10.1016/j.jgar.2019.11.012
  7. Center for Disease Control and Prevention (CDC). 2011. Burden of Foodborne Illness: Findings. Available from https://www.cdc.gov/foodborneburden/2011-foodborne-estimates.html. Accessed Nov. 05, 2018.
  8. Farha AK, Yang QQ, Kim G, Zhang D, Mavumengwana V, Habimana O, et al. 2020. Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control 112: 107154. https://doi.org/10.1016/j.foodcont.2020.107154
  9. Olia AHG, Ghahremani M, Ahmadi A, Sharifi Y. 2020. Comparison of biofilm production and virulence gene distribution among community-and hospital-acquired Staphylococcus aureus isolates from northwestern Iran. Infect. Genet. Evol. 81: 104262. https://doi.org/10.1016/j.meegid.2020.104262
  10. Pontes EKU, Melo HM, Nogueira JWA, Firmino NCS, de Carvalho MG, Catunda FEA, Cavalcant TTA. 2019. Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus. Food Sci. Biotechnol. 28: 633-639. https://doi.org/10.1007/s10068-018-0502-2
  11. Olszewska MA, Gedas A, Simoes M. 2020. Antimicrobial polyphenol-rich extracts: applications and limitations in the food industry. Food. Res. Int. 134: 109214. https://doi.org/10.1016/j.foodres.2020.109214
  12. Saidi N, Owlia P, Marashi SMA, Saderi H. 2019. Inhibitory effect of probiotic yeast Saccharomyces cerevisiae on biofilm formation and expression of α-hemolysin and enterotoxin A genes of Staphylococcus aureus. Iran J. Microbiol. 11: 246-254.
  13. Yan X, Gu S, Cui X, Shi Y, Wen S, Chen H, Ge J. 2019. Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microb. Pathog. 127: 12-20. https://doi.org/10.1016/j.micpath.2018.11.039
  14. Song YJ, Yu HH, Kim YJ, Lee NK, Paik HD. 2019. Anti-biofilm activity of grapefruit seed extract against Staphylococcus aureus and Escherichia coli. J. Microbiol. Biotechnol. 29: 1177-1183. https://doi.org/10.4014/jmb.1905.05022
  15. Cui T, Bai F, Sun M, Lv X, Li X, Zhang D, Du H. 2020. Lactobacillus crustorum ZHG 2-1 as novel quorum-quenching bacteria reducing virulence factors and biofilms formation of Pseudomonas aeruginosa. LWT-Food Sci. Technol. 117: 108696 https://doi.org/10.1016/j.lwt.2019.108696
  16. Wang N, Yuan L, Sadiq FA, He G. 2019. Inhibitory effect of Lactobacillus plantarum metabolites against biofilm formation by Bacillus licheniformis isolated from milk powder products. Food Control 106: 106721. https://doi.org/10.1016/j.foodcont.2019.106721
  17. Kaur S, Sharma P, Kalia N, Singh J, Kaur S. 2018. Anti-biofilm properties of the fecal probiotic Lactobacilli against Vibrio spp. Front. Cell. Infect. Microbiol. 8: 120. https://doi.org/10.3389/fcimb.2018.00120
  18. Braiek, OB, Merghni A, Smaoui S, Mastouri M. 2019. Enterococcus lactis Q1 and 4CP3 strains from raw shrimps: Potential of antioxidant capacity and anti-biofilm activity against methicillin-resistant Staphylococcus aureus strains. LWT-Food Sci. Technol. 102: 15-21. https://doi.org/10.1016/j.lwt.2018.11.095
  19. Hong JY, Lee NK, Yi SH, Hong SP, Paik HD. 2019. Physicochemical features and microbial community of milk kefir using a potential probiotic Saccharomyces cerevisiae KU200284. J. Dairy Sci. 102: 10845-10849. https://doi.org/10.3168/jds.2019-16384
  20. Lee NK, Hong JY, Yi SH, Hong SP, Lee JE, Paik HD. 2019. Bioactive compounds of probiotic Saccharomyces cerevisiae strains isolated from cucumber jangajji. J. Funct. Foods 58: 324-329. https://doi.org/10.1016/j.jff.2019.04.059
  21. de Lima MDSF, de Souza KMS, Albuquerque WWC, Teixeira JAC, Cavalcanti MTH, Porto ALF. 2017. Saccharomyces cerevisiae from Brazilian kefir-fermented milk: An in vitro evaluation of probiotic properties. Microb. Pathog. 110: 670-677. https://doi.org/10.1016/j.micpath.2017.05.010
  22. Fakruddin MD, Hossain MN, Ahmed MM. 2017. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complement. Altern. Med. 17: 64. https://doi.org/10.1186/s12906-017-1591-9
  23. Moslehi-Jenabian S, Lindegaard L, Jespersen L. 2010. Beneficial effects of probiotic and food borne yeasts on human health. Nutrients 2: 449-473. https://doi.org/10.3390/nu2040449
  24. Yu HH, Song YJ, Yu HS, Lee NK, Paik HD. 2020. Investigating the antimicrobial and antibiofilm effects of cinnamaldehyde against Campylobacter spp. using cell surface characteristics. J. Food Sci. 85: 157-164. https://doi.org/10.1111/1750-3841.14989
  25. Islam B, Khan SN, Haque I, Alam M, Mushfiq M, Khan AU. 2008. Novel anti-adherence activity of mulberry leaves: inhibition of Streptococcus mutans biofilm by 1-deoxynojirimycin isolated from Morus alba. J. Antimicrob. Chemother. 62: 751-757. https://doi.org/10.1093/jac/dkn253
  26. Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y. 2015. A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability. Microb. Biotechnol. 8: 392-403. https://doi.org/10.1111/1751-7915.12155
  27. Heggers JP, Cottingham J, Gusman J, Reagor L, McCoy L, Carino E, et al. 2002. The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity. J. Altern. Complement. Med. 8: 333-340. https://doi.org/10.1089/10755530260128023
  28. Kang J, Jin W, Wang J, Sun Y, Wu X, Liu L. 2019. Antibacterial and anti-biofilm activities of peppermint essential oil against Staphylococcus aureus. LWT-Food Sci. Technol. 101: 639-645. https://doi.org/10.1016/j.lwt.2018.11.093
  29. Ghorbani Z, Owlia P, Marashi MA, Saderi H. 2018. Effect of supernatant and cell lysate extracts of Saccharomyces cerevisiae on biofilm and alginate production by Pseudomonas aeruginosa. Iran J. Med. Microbiol. 12: 189-198. https://doi.org/10.30699/ijmm.12.3.189
  30. Kim BR, Bae YM, Hwang JH, Lee SY. 2016. Biofilm formation and cell surface properties of Staphylococcus aureus isolates from various sources. Food Sci. Biotechnol. 25: 643-648. https://doi.org/10.1007/s10068-016-0090-y
  31. Kouidhi B, Zmantar T, Hentati H, Bakhrouf A. 2010. Cell surface hydrophobicity, biofilm formation, adhesives properties and molecular detection of adhesins genes in Staphylococcus aureus associated to dental caries. Microb. Pathog. 49: 14-22. https://doi.org/10.1016/j.micpath.2010.03.007
  32. Vijayakumar K, Bharathidasan V, Manigandan V, Jeyapragash D. 2020. Quebrachitol inhibits biofilm formation and virulence production against methicillin-resistant Staphylococcus aureus. Microb. Pathog. 149: 104286. https://doi.org/10.1016/j.micpath.2020.104286
  33. Ates O. 2015. Systems biology of microbial exopolysaccharides production. Front. Bioeng. Biotech. 3: 200. https://doi.org/10.3389/fbioe.2015.00200
  34. Liu M, Wu X, Li J, Liu L, Zhang R, Shao D, Du X. 2017. The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon. Food Control 73: 613-618. https://doi.org/10.1016/j.foodcont.2016.09.015
  35. Bai JR, Zhong K, Wu YP, Elena G, Gao H. 2019. Antibiofilm activity of shikimic acid against Staphylococcus aureus. Food Control 95: 327-333. https://doi.org/10.1016/j.foodcont.2018.08.020
  36. Cui H, Zhang C, Li C, Lin L. 2020. Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. LWT-Food Sci. Technol. 122: 109057. https://doi.org/10.1016/j.lwt.2020.109057