참고문헌
- Kullberg BJ, Arendrup MC. 2015. Invasive candidiasis. N. Engl. J. Med. 373: 1445-1456. https://doi.org/10.1056/NEJMra1315399
- Deorukhkar SC, Saini S, Mathew S. 2014. Non-albicans Candida infection: an emerging threat. Interdiscip. Perspect. Infect. Dis. 2014: 615958.
- Shapiro RS, Robbins N, Cowen LE. 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 75: 213-267. https://doi.org/10.1128/MMBR.00045-10
- Bondaryk M, Kurzatkowski W, Staniszewska M. 2013. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: mode of action and resistance development. Postepy Dermatol. Alergol. 30: 293-301.
- Odds FC, Brown AJ, Gow NA. 2003. Antifungal agents: mechanisms of action. Trends Microbiol. 11: 272-279. https://doi.org/10.1016/S0966-842X(03)00117-3
- Bossche HV, Koymans L, Moereels H. 1995. P450 inhibitors of use in medical treatment: focus on mechanisms of action. Pharmacol. Ther. 67: 79-100. https://doi.org/10.1016/0163-7258(95)00011-5
- Polak A, Scholer HJ. 1975. Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemother 21: 113-130. https://doi.org/10.1159/000221854
- Kordalewska M, Perlin DS. 2019. Identification of drug resistant Candida auris. Front. Microbiol. 10: 1918.
- Guevara-Lora I, Bras G, Karkowska-Kuleta J, Gonzalez-Gonzalez M, Ceballos K, Sidlo W, et al. 2020. Plant-derived substances in the fight against infections caused by Candida species. Int. J. Mol. Sci. 21: 6131. https://doi.org/10.3390/ijms21176131
- Perumal Samy R, Gopalakrishnakone P. 2010. Therapeutic potential of plants as anti-microbials for drug discovery. Evid. Based Complement. Alternat. Med. 7: 283-294. https://doi.org/10.1093/ecam/nen036
- Lee HS, Kim Y. 2020. Aucklandia lappa causes cell wall damage in Candida albicans by reducing chitin and (1, 3)-β-D-glucan. J. Microbiol. Biotechnol. 30: 967-973. https://doi.org/10.4014/jmb.2002.02025
- Rodrigues L, Ramos J, Couto I, Amaral L, Viveiros M. 2011. Ethidium bromide transport across Mycobacterium smegmatis cell-wall: correlation with antibiotic resistance. BMC Microbiol. 11: 35. https://doi.org/10.1186/1471-2180-11-35
- Brasch J, Kreiselmaier I, Christophers E. 2003. Inhibition of dermatophytes by optical brighteners. Mycoses 46: 120-125. https://doi.org/10.1046/j.1439-0507.2003.00857.x
- Lee HS, Kim Y. 2017. Paeonia lactiflora inhibits cell wall synthesis and triggers membrane depolarization in Candida albicans. J. Microbiol. Biotechnol. 27: 395-404. https://doi.org/10.4014/jmb.1611.11064
- Chow J, Dionne HM, Prabhakar A, Mehrotra A, Somboonthum J, Gonzalez B, et al. 2019. Aggregate filamentous growth responses in yeast. mSphere 4: e00702-18.
- Kumar R, Saraswat D, Tati S, Edgerton M. 2015. Novel aggregation properties of Candida albicans secreted aspartyl proteinase Sap6 mediate virulence in oral candidiasis. Infect. Immun. 83: 2614-2026. https://doi.org/10.1128/IAI.00282-15
- LePecq JB, Paoletti C. 1967. A fluorescent complex between ethidium bromide and nucleic acids: physical-chemical characterization. J. Mol. Biol. 27: 87-106. https://doi.org/10.1016/0022-2836(67)90353-1
- Dive C, Watson JV, Workman P. 1990. Multiparametric analysis of cell membrane permeability by two colour flow cytometry with complementary fluorescent probes. Cytometry 11: 244-252. https://doi.org/10.1002/cyto.990110205
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
- Repakova J, Capkova P, Holopainen JM, Vattulainen I. 2004. Distribution, orientation, and dynamics of DPH probes in DPPC bilayer. J. Phys. Chem. B. 108: 13438-13448. https://doi.org/10.1021/jp048381g
- Arino J, Ramos J, Sychrova H. 2010. Alkali metal cation transport and homeostasis in yeasts. Microbiol. Mol. Biol. Rev. 74: 95-120. https://doi.org/10.1128/MMBR.00042-09