References
- Bae S, Lee JY, Myoung J. 2019. Chikungunya virus-encoded nsP2, E2 and E1 strongly antagonize the interferon-beta signaling pathway. J. Microbiol. Biotechnol. 29: 1852-1859. https://doi.org/10.4014/jmb.1910.10014
- Burt FJ, Chen W, Miner JJ, Lenschow DJ, Merits A, Schnettler E, et al. 2017. Chikungunya virus: an update on the biology and pathogenesis of this emerging pathogen. Lancet Infect. Dis. 17: e107-e117. https://doi.org/10.1016/S1473-3099(16)30385-1
- Bustos Carrillo F, Collado D, Sanchez N, Ojeda S, Lopez Mercado B, Burger-Calderon R, et al. 2019. Epidemiological evidence for lineage-specific differences in the risk of inapparent chikungunya virus infection. J. Virol. 93: e1622-18.
- Zhang YN, Deng CL, Li JQ, Li N, Zhang QY, Ye HQ, et al. 2019. Infectious chikungunya virus (CHIKV) with a complete capsid deletion: a new approach for a CHIKV vaccine. J. Virol. 93: e00504-19.
- Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-105. https://doi.org/10.1038/nature04734
- Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: its implication for vaccine design. J. Microbiol. 57: 803-811. https://doi.org/10.1007/s12275-019-9272-7
- Lee JY, Bae S, Myoung J. 2019. Middle east respiratory syndrome coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-kappaB. J. Microbiol. Biotechnol. 29: 1316-1323. https://doi.org/10.4014/jmb.1908.08004
- Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, et al. 2010. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141: 315-330. https://doi.org/10.1016/j.cell.2010.03.029
- Lee JY, Kim SJ, Myoung J. 2019. Middle east respiratory syndrome coronavirus-encoded ORF8b inhibits RIG-I-like receptors in a differential mechanism. J. Microbiol. Biotechnol. 29: 2014-2021. https://doi.org/10.4014/jmb.1911.11024
- Myoung J, Lee JY, Min KS. 2019. Methyltransferase of a cell culture-adapted hepatitis E inhibits the MDA5 receptor signaling pathway. J. Microbiol. 57: 1126-1131. https://doi.org/10.1007/s12275-019-9478-8
- Myoung J, Lee SA, Lee HR. 2019. Beyond viral interferon regulatory factors: Immune evasion strategies. J. Microbiol. Biotechnol. 29: 1873-1881. https://doi.org/10.4014/jmb.1910.10004
- Ramos HJ, Gale M, Jr. 2011. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr. Opin. Virol. 1: 167-176. https://doi.org/10.1016/j.coviro.2011.04.004
- Myoung J, Min K. 2019. Dose-dependent inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon responses by methyltransferase of hepatitis E virus. J. Microbiol. Biotechnol. 29: 1137-1143. https://doi.org/10.4014/jmb.1905.05040
- Park BJ, Jung ST, Choi CS, Myoung J, Ahn HS, Han SH, et al. 2018. Pathogenesis of human norovirus genogroup II genotype 4 in post-weaning gnotobiotic pigs. J. Microbiol. Biotechnol. 28: 2133-2140. https://doi.org/10.4014/jmb.1809.09061
- Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
- Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
- Ahn DG, Shin HJ, Kim MH, Lee S, Kim HS, Myoung J, et al. 2020. Current status of epidemiology, diagnosis, therapeutics, and vaccines for novel coronavirus disease 2019 (COVID-19). J. Microbiol. Biotechnol. 30: 313-324. https://doi.org/10.4014/jmb.2003.03011
- Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of middle east respiratory syndrome coronavirus. J. Microbiol. Biotechnol. 29: 999-1007. https://doi.org/10.4014/jmb.1905.05061
- Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, et al. 2007. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA 104: 582-587. https://doi.org/10.1073/pnas.0606699104
- Areschoug T, Gordon S. 2008. Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. Contrib. Microbiol. 15: 45-60. https://doi.org/10.1159/000135685
- Brisse M, Ly H. 2019. Comparative Structure and Function Analysis of the RIG-I-Like Receptors: RIG-I and MDA5. Front. Immunol. 10: 1586. https://doi.org/10.3389/fimmu.2019.01586
- Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669-682. https://doi.org/10.1016/j.cell.2005.08.012
- Hinz M, Scheidereit C. 2014. The IkappaB kinase complex in NF-kappaB regulation and beyond. EMBO Rep. 15: 46-61. https://doi.org/10.1002/embr.201337983
- Abe T, Barber GN. 2014. Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NFkappaB activation through TBK1. J. Virol. 88: 5328-5341. https://doi.org/10.1128/JVI.00037-14
- Zhang L, Alter HJ, Wang H, Jia S, Wang E, Marincola FM, et al. 2013. The modulation of hepatitis C virus 1a replication by PKR is dependent on NF-kB mediated interferon beta response in Huh7.5.1 cells. Virology 438: 28-36. https://doi.org/10.1016/j.virol.2013.01.015
- Dong XY, Tang SQ. 2016. Classical swine fever virus NS5A protein changed inflammatory cytokine secretion in porcine alveolar macrophages by inhibiting the NF-kappaB signaling pathway. Virol. J. 13: 101. https://doi.org/10.1186/s12985-016-0545-z
- Garg RR, Jackson CB, Rahman MM, Khan AR, Lewin AS, McFadden G. 2019. Myxoma virus M013 protein antagonizes NF-kappaB and inflammasome pathways via distinct structural motifs. J. Biol. Chem. 294: 8480-8489. https://doi.org/10.1074/jbc.RA118.006040
- Akhrymuk I, Kulemzin SV, Frolova EI. 2012. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J. Virol. 86: 7180-7191. https://doi.org/10.1128/JVI.00541-12
- Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M, Vanlandingham DL, et al. 2010. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J. Virol. 84: 10877-10887. https://doi.org/10.1128/JVI.00949-10
- Breakwell L, Dosenovic P, Karlsson Hedestam GB, D'Amato M, Liljestrom P, Fazakerley J, et al. 2007. Semliki Forest virus nonstructural protein 2 is involved in suppression of the type I interferon response. J. Virol. 81: 8677-8684. https://doi.org/10.1128/JVI.02411-06
- Akhrymuk I, Frolov I, Frolova EI. 2016. Both RIG-I and MDA5 detect alphavirus replication in concentration-dependent mode. Virology 487: 230-241. https://doi.org/10.1016/j.virol.2015.09.023
- Strauss JH, Strauss EG. 1994. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58: 491-562. https://doi.org/10.1128/MR.58.3.491-562.1994
- Kuo SC, Chen YJ, Wang YM, Tsui PY, Kuo MD, Wu TY, et al. 2012. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion. J. Biomed. Sci. 19: 44. https://doi.org/10.1186/1423-0127-19-44
- Levine JR, Prescott J, Brown KS, Best SM, Ebihara H, Feldmann H. 2010. Antagonism of type I interferon responses by new world hantaviruses. J. Virol. 84: 11790-11801. https://doi.org/10.1128/JVI.00916-10
- Ngueyen TTN, Kim SJ, Lee JY, Myoung J. 2019. Zika Virus proteins NS2A and NS4A Are major antagonists that reduce IFN-beta promoter activity induced by the MDA5/RIG-I signaling pathway. J. Microbiol. Biotechnol. 29: 1665-1674. https://doi.org/10.4014/jmb.1909.09017
- Lee JY, Nguyen TTN, Myoung J. 2020. Zika Virus-encoded NS2A and NS4A strongly downregulate NF-kappaB promoter activity. J. Microbiol. Biotechnol. 30: 1651-1658. https://doi.org/10.4014/jmb.2011.11003
Cited by
- Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors vol.10, pp.4, 2020, https://doi.org/10.3390/pathogens10040448
- The C-Terminal Domain of Salmonid Alphavirus Nonstructural Protein 2 (nsP2) Is Essential and Sufficient To Block RIG-I Pathway Induction and Interferon-Mediated Antiviral Response vol.95, pp.23, 2020, https://doi.org/10.1128/jvi.01155-21