DOI QR코드

DOI QR Code

Deep Quiz Cropping for Construction of Quiz Pool in Online Quiz System

온라인 퀴즈 시스템의 문제은행 구축 자동화를 위한 Deep Quiz Cropping 기술 개발

  • Received : 2020.10.27
  • Accepted : 2020.12.15
  • Published : 2020.12.31

Abstract

We presented a method of deep quiz cropping for automatic construction of quiz pool in online quiz systems. The method detects question boxes and sunda boxes in images captured from test papers by a deep learning-based object detector, and makes pairs of question box and sunda box by the box coupling. We applied the deep quiz cropping to images captured from test papers and achieved successful results.

본 논문은 온라인 퀴즈 시스템에서 핵심인 문제은행 구축 자동화를 위한 Deep Quiz Cropping 기법을 제시했다. 이것은 문제지를 스캔한 그림 파일에서 개별문제에 대한 질의영역과 선다영역을 딥러닝 기반 검출기를 통해 검출하는 것과, 문제생성을 위해 질의영역과 선다영역을 짝지우고 영역오류를 수정하는 Box Coupling으로 이루어졌다. 문제지 및 시험지를 스캔한 영상파일에 Deep Quiz Coupling 기법을 적용한 다수의 실험에서 질의영역과 선다영역을 검출하는데 있어서 성공적인 결과를 도출했다.

Keywords

References

  1. B. Han and J. Gu, "The Design and implementation of On-Line Quiz Game Learning System for Learning Motivation," Journal of the Korea Computer Industry Society, vol. 4, no. 12, 2003, pp. 911 - 922.
  2. D. Hong and H. Kim, "Web-based online evaluation system for essay question," Journal of The korean Association Of Information Education, vol. 8, no. 2, 2004 , pp. 251-260.
  3. B. Kim, "Design of Flipped Learning using Blog," The Journal of The Korea Institute of Electronic Communication Sciences, vol. 13, no. 2, 2018, pp. 391 - 396. https://doi.org/10.13067/JKIECS.2018.13.2.391
  4. T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature Pyramid Networks for Object Detection", CVPR, 2017.
  5. T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, "Focal Loss for Dense Object Detection", ICCV, 2017.
  6. N. Lee, H. Jeong, and H. Jo, "Development of Image Defect Detection Model Using Machine Learning," The Journal of The Korea Institute of Electronic Communication Sciences, vol. 15, no. 3, 2020, pp. 513 - 520. https://doi.org/10.13067/JKIECS.2020.15.3.513
  7. J. Lee, S. Lee, D. Kim, S. Hong, and S. Yang, "Trends on Object Detection Techniques Based on Deep Learning," Electronics and telecommunications trends, vol. 33, no. 4, 2018, pp. 23 - 32. https://doi.org/10.22648/ETRI.2018.J.330403
  8. S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Trans. Pattern Anal. Mach. Intel., vol. 39, no. 6, 2017, pp. 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
  9. W. Lee and M. Shin, "A Driver's Condition Warning System using Eye Aspect Ratio," The Journal of The Korea Institute of Electronic Communication Sciences, vol. 15, no. 2, 2020, pp. 349 - 356. https://doi.org/10.13067/JKIECS.2020.15.2.349
  10. N. Otsu, "A Threshold Selection Method from Gray-level Histograms," IEEE Trans. Sys. Man. Cyber. vol. 9, no. 1, 1979, pp. 62-66. https://doi.org/10.1109/TSMC.1979.4310076
  11. G. Ritter and J. Wilson, Handbook of Computer Vision Algorithms in Image Algebra 2nd edition., CRC Press, sec. 6.3, 2001