DOI QR코드

DOI QR Code

큐브맵 비디오에서 칼만 필터를 사용한 빠른 패턴 추적

Fast Pattern Tracking in Cubemap Video Using Kalman Filter

  • 김기식 (인천대학교 컴퓨터공학부) ;
  • 박종승 (인천대학교 컴퓨터공학부)
  • Kim, Ki-Sik (Dept. of Computer Science and Engineering, Incheon National University) ;
  • Park, Jong-Seung (Dept. of Computer Science and Engineering, Incheon National University)
  • 투고 : 2020.10.26
  • 심사 : 2020.12.11
  • 발행 : 2020.12.20

초록

본 논문에서는 360도 VR을 위한 큐브맵 비디오 환경에서 패턴의 위치 예측을 사용한 빠른 패턴 추적 방법을 제안한다. 구면 큐브맵 프레임은 6면의 텍스처를 가지므로 패턴 탐색도 6면 텍스처에 대해서 모두 수행해야 하므로 평면 프레임의 경우보다 매우 느리다. 본 논문에서는 이러한 한계점을 극복하기 위해 칼만 필터를 활용하여 패턴의 향후 위치를 예측하고 패턴이 존재할 가능성이 큰 텍스처만 탐색하여 탐색 영역을 축소하는 방법을 제안한다. 실험 결과, 제안하는 시스템은 6면을 모두 탐색하는 방법보다 월등히 빠르게 수행하면서 정확한 패턴 인식 성능을 보였다.

This paper presents a fast pattern tracking method using location prediction in cubemap video for 360-degree VR. A spherical cubemap frame has six face textures and searching a pattern is much slower than a flat image. To overcome the limitation, we propose a method of predicting the location of target pattern using Kalman filter and reducing the search area by considering only textures of predicted location. The experimental results showed that the proposed system is much faster than the previous method of searching all six faces and also gives accurate pattern tracking performance.

키워드

참고문헌

  1. Guofeng Tong, Jiuhong Gu, "Locating Objects in Spherical Panoramic Images", 2011 IEEE International Conference on Robotics and Biomimetics, pp.818-823, 2011.
  2. Jeong-Hyeon Park, Jong-Seung Park, "Planar Texture Replacement in Spherical Images using Cubemap", Journal of Korea Game Society, Vol. 17, No. 6, pp.153-164, 2017. https://doi.org/10.7583/JKGS.2017.17.6.153
  3. Herbert Bay, Tinne Tuytelaars, Luc Van Gool, "Surf: Speeded up robust features", European Conference on Computer Vision, pp.404-417, 2006.
  4. Gi-Woo Kim, Dae-Seong Kang, "An Implementation of Object Detection and Tracking Algorithm Using a Fusion Method of SURF and Kalman Filter", Journal of KII, Vol. 13, No. 2, pp.59-64, 2015.
  5. David G. Lowe, "Distinctive images Features from Scale-Invariant Keypoints", International Journal of Computer Vision, Vol. 60, pp.91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  6. Edward Rosten, Tom Drummond, "Machine learning for high-speed corner detection," in Proc. 9th European Conference on Computer Vision, pp.430-443, May 2006.
  7. Yong-Hwan Lee, Je-Ho Park, Young-Seop Kim, "Comparative Analysis of the Performance of SIFT and SURF", Journal of the Semiconductor & Display Technology, Vol. 12, No. 3, pp.59-64, 2013.
  8. Greg Welch, Gary Bishop, "An Introduction to the Kalman Filter", Technical Report TR 95-041, University of North Carolina, 1995.
  9. Simon J. Julier, Jeffrey K. Uhlmann, "A New Extension of the Kalman Filter to Nonlinear Systems", 11th International Symposium on Aerospace/Defense Sensing, Simulation and Controls, pp.182-193, 1997.
  10. E. A. Wan, R. Van Der Merwe, "The Unscented Kalman Filter for Nonlinear Estimation," in Proc. IEEE Adaptive Systems for Signal Processing, Communications, and Control Symposium, pp.53-158, 2000.
  11. Gicheol Kim, Sohee Son, Minseop Kim, Jinwoo Jeon, Injae Lee, Jihun Cha, Haechul Choi, "Object Tracking Method using Deep Learning and Kalman Filter", Journal of Broadcast Engineering, Vol. 24, No. 3, pp.495-505, 2019. https://doi.org/10.5909/JBE.2019.24.3.495
  12. Yea-Som Lee, Bong-Soo Sohn, "Motion Sickness Reduction Using Low-Pass Filter and Kalman Filter in Navigation of HMD-based in virtual reality", in Proceedings of HCIK, pp.37-840, 2019.
  13. https://theta360.com/en/ (accessed on 13 October 2020).