DOI QR코드

DOI QR Code

On bending analysis of perforated microbeams including the microstructure effects

  • Abdelrahman, Alaa A. (Mechanical Design & Production Department, Faculty of Engineering, Zagazig University) ;
  • Abd-El-Mottaleb, Hanaa E. (Structural Engineering Department, Faculty of Engineering, Zagazig University) ;
  • Eltaher, Mohamed A. (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • Received : 2020.03.25
  • Accepted : 2020.08.15
  • Published : 2020.12.25

Abstract

This article presents a nonclassical size dependent model based on the modified couple stress theory to study and analyze the bending behavior of perforated microbeams under different loading patterns. Modified equivalent material and geometrical parameters for perforated beam are presented. The modified couple stress theory with one material length scale parameter is adopted to incorporate the microstructure effect into the governing equations of perforated beam structure. The governing equilibrium equations of the perforated Timoshenko as well as the perforated Euler Bernoulli are developed based on the potential energy minimization principle. The Poisson's effect is included in the governing equilibrium equations. Regular square perforation configuration is considered. Based on Fourier series expansion, closed forms for the bending deflection and the rotational displacements are obtained for simply supported perforated microbeams. The proposed methodology is validated and compared with the available results in the literature and an excellent agreement is detected. Numerical results demonstrated the applicability of the proposed methodology to investigate the bending behavior of regularly squared perforated beams incorporating microstructure effect under different excitation patterns. The obtained results are significantly important for the design and production of perforated microbeam structures.

Keywords

References

  1. Abdelrahman, A. A., Eltaher, M. A., Kabeel, A. M., Abdraboh, A. M. and Hendi, A. A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489
  2. Abdelrahman, A. A., Mohamed, N. A. and Eltaher, M. A. (2020), Static bending of perforated nanobeams including surface energy and microstructure effects. Engineering with Computers, 1-21. https://doi.org/10.1007/s00366-020-01149-x
  3. Alashti, R. A. and Abolghasemi, A.H., (2014), "A size-dependent Bernoulli-Euler beam formulation based on a new model of couple stress theory", J. Eng., 27(6), 951-960.
  4. Agwa, M. A. and Eltaher, M. A. (2016), "Vibration of a carbyne nanomechanical mass sensor with surface effect", Appl. Physics A, 122(4), 335. https://doi.org/10.1007/s00339-016-9934-9
  5. Almitani, K. H., Abdelrahman, A. A. and Eltaher, M. A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643
  6. Almitani, K. H., Abdelrahman, A. A. and Eltaher, M. A. (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555
  7. Amabili, M. (2006), "Theory and experiments for large-amplitude vibrations of rectangular plates with geometric imperfections", J. Sound Vib., 291(3-5), 539-565. https://doi.org/10.1016/j.jsv.2005.06.007
  8. Amar, L. H. H., Kaci, A., Yeghnem, R. and Tounsi, A. (2018), "A new four-unknown refined theory based on modified couple stress theory for size-dependent bending and vibration analysis of functionally graded micro-plate", Steel Compos. Struct., 26(1), 89-102. https://doi.org/10.12989/scs.2018.26.1.089
  9. Ansari, R., Torabi, J. and Hassani, R. (2019), "Vibration analysis of FG-CNTRC plates with an arbitrarily shaped cutout based on the variational differential quadrature finite element method", Mater. Res. Express, 6(12), 125086. https://doi.org/10.1088/2053-1591/ab5b57
  10. Ansari, R., Hassani, R. and Torabi, J. (2020), "Mixed-type formulation of higher-order shear deformation theory for vibration and buckling analysis of FG-GPLRC plates using VDQFEM", Compos. Struct., 235, 111738.https://doi.org/10.1016/j.compstruct.2019.111738
  11. Arefi, M. (2019), "Static analysis of laminated piezo-magnetic size-dependent curved beam based on modified couple stress theory", Struct. Eng. Mech., 69(2), 145-153. https://doi.org/10.12989/sem.2019.69.2.145
  12. Bellifa, H., Benrahou, K. H., Bousahla, A. A., Tounsi, A. and Mahmoud, S. R. (2017), A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams. Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695
  13. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/sem.2019.69.4.457
  14. Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M. E. A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014
  15. Chaabane, L. A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F. Z., Tounsi, A., ... & Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185
  16. Chan, J., Eichenfield, M., Camacho, R. and Painter, O. (2009), "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity", Optics Express, 17(5), 3802-3817. https://doi.org/10.1364/OE.17.003802
  17. Ebrahimi, F., Jafari, A. and Mahesh, V. (2019a), "Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates", Struct. Eng. Mech., 72(1), 113-129. https://doi.org/10.12989/sem.2019.72.1.113
  18. Ebrahimi, F., Fardshad, R. E. and Mahesh, V. (2019b), "Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams", Adv. Nano Res., 7(6), 391. https://doi.org/10.12989/anr.2019.7.6.391
  19. Ebrahimi, F., Karimiasl, M., Civalek, O. and Vinyas, M. (2019c), "Surface effects on scale-dependent vibration behavior of flexoelectric sandwich nanobeams", Adv. Nano Res., 7(2), 77. https://doi.org/10.12989/anr.2019.7.2.077
  20. Ebrahimi, F., Karimiasl, M. and Mahesh, V. (2019d), "Vibration analysis of magneto-flexo-electrically actuated porous rotary nanobeams considering thermal effects via nonlocal strain gradient elasticity theory", Adv. Nano Res., 7(4), 223-231. https://doi.org/10.12989/anr.2019.7.4.223
  21. Eltaher, M. A., Mahmoud, F. F., Assie, A. E. and Meletis, E. I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002
  22. Eltaher, M. A., Hamed, M. A., Sadoun, A. M. and Mansour, A. (2014), "Mechanical analysis of higher order gradient nanobeams", Appl. Math. Comput., 229, 260-272. https://doi.org/10.1016/j.amc.2013.12.076
  23. Eltaher, M. A., El-Borgi, S. and Reddy, J. N. (2016), "Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs", Compos. Struct., 153, 902-913. https://doi.org/10.1016/j.compstruct.2016.07.013
  24. Eltaher, M. A., Kabeel, A. M., Almitani, K. H. and Abdraboh, A. M. (2018a), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3
  25. Eltaher, M. A., Abdraboh, A. M. and Almitani, K. H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6
  26. Eltaher, M. A., Omar, F. A., Abdalla, W. S. and Gad, E. H. (2019a), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Waves in Random and Complex Media, 29(2), 264-280.https://doi.org/10.1080/17455030.2018.1429693
  27. Eltaher, M.A., Mohamed. N (2020a), "Nonlinear Stability and Vibration of Imperfect CNTs by Doublet Mechanics", Appl. Math. Comput., 382,125311. https://doi.org/10.1016/j.amc.2020.125311
  28. Eltaher, M.A., Mohamed., N.A., (2020b), "Vibration of Nonlocal Perforated Nanobeams under General Boundary Conditions", Smart Struct. Syst., 25(4), 510-514. https://doi.org/10.12989/sss.2020.25.4.501
  29. Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S., and A.E. Alshorbagy. (2020a), "Mechanical Behaviors of Piezoelectric Nonlocal Nanobeam with Cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219
  30. Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, M.A., and A.E. Alshorbagy. (2020b), "Mechanical Analysis of Cutout Piezoelectric Nonlocal Nanobeam including Surface Energy Effects", Struct. Eng. Mech., 76(1), 141-151 https://doi.org/10.12989/sem.2020.76.1.141
  31. Eltaher, M. A., Mohamed, N. and Mohamed, S. A. (2020c), Nonlinear buckling and free vibration of curved CNTs by doublet mechanics. Smart Struct. Syst., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213
  32. Eltaher, M. A. and Abdalrahmaan, A.A., (2020), "Bending Behavior of squared cutout Nanobeams incorporating Surface Stress Effects", Steel Compos. Struct., 36(2), 143-161. https://doi.org/10.12989/scs.2020.36.2.143
  33. Gao, X. L. and Park, S. K. (2007), "Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem", J. Solids Struct., 44(22-23), 7486-7499. https://doi.org/10.1016/j.ijsolstr.2007.04.022
  34. Gao, X. L. and Mahmoud, F. F. (2014), "A new Bernoulli-Euler beam model incorporating microstructure and surface energy effects", Zeitschrift für angewandte Mathematik und Physik, 65(2), 393-404. https://doi.org/10.1007/s00033-013-0343-z
  35. Gao, X. L. (2015), "A new Timoshenko beam model incorporating microstructure and surface energy effects", Acta Mechanica, 226(2), 457-474. https://doi.org/10.1007/s00707-014-1189-y
  36. Guha, K., Kumar, M., Agarwal, S. and Baishya, S. (2015), "A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam", Solid State Electronics, 114, 35-42. https://doi.org/10.1016/j.sse.2015.07.008
  37. Hamed, M. A., Sadoun, A. M. and Eltaher, M. A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089
  38. Hamed, M. A., Mohamed, N. and Eltaher, M. A. (2020), "Stability Buckling and Bending of Nanobeams including Cutouts", Eng. Computers, 1-14. https://doi.org/10.1007/s00366-020-01063-2
  39. Jahangiri, R., Jahangiri, H. and Khezerloo, H. (2015), "FGM micro-gripper under electrostatic and intermolecular Van-der Waals forces using modified couple stress theory", Steel Compos. Struct., 18(6), 1541-1555. https://doi.org/10.12989/scs.2015.18.6.1541
  40. Jeong, K. H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029
  41. Karimiasl, M., Ebrahimi, F. and Mahesh, V. (2019a), "Nonlinear forced vibration of smart multiscale sandwich composite doubly curved porous shell", Thin-Wall. Struct., 143, 106152. https://doi.org/10.1016/j.tws.2019.04.044
  42. Karimiasl, M., Ebrahimi, F. and Mahesh, V. (2019b), "Postbuckling analysis of piezoelectric multiscale sandwich composite doubly curved porous shallow shells via Homotopy Perturbation Method", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-019-00841-x
  43. Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-dimensional Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021
  44. Khater, M. E., Eltaher, M. A., Abdel-Rahman, E. and Yavuz, M. (2014), "Surface and thermal load effects on the buckling of curved nanowires", Eng. Sci. Technol., 17(4), 279-283. https://doi.org/10.1016/j.jestch.2014.07.003
  45. Khatir, S., Tiachacht, S., Thanh, C. L., Bui, T. Q. and Wahab, M. A. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509
  46. Kim, J. H., Jeon, J. H., Park, J. S., Seo, H. D., Ahn, H. J. and Lee, J. M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016
  47. Kocaturk, T. and Akbas, S. D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  48. Lam, D. C., Yang, F., Chong, A. C. M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Physics Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  49. Lata, P. and Kaur, H. (2019), "Deformation in transversely isotropic thermoelastic medium using new modified couple stress theory in frequency domain", Geomech. Eng., 19(5), 369-381. https://doi.org/10.12989/gae.2019.19.5.369
  50. Lee, Y. Y. (2016), The effect of leakage on the sound absorption of a nonlinear perforated panel backed by a cavity. J. Mech. Sci., 107, 242-252. https://doi.org/10.1016/j.ijmecsci.2016.01.019
  51. Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Engineering, 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341
  52. Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004
  53. Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085
  54. Ma, H. M., Gao, X. L. and Reddy, J. N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Physics Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  55. Mahmoud, F. F., Eltaher, M. A., Alshorbagy, A. E. and Meletis, E. I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z
  56. McFarland, A. W. and Colton, J. S. (2005), "Role of material microstructure in plate stiffness with relevance to microcantilever sensors", J. Micromech. Microeng., 15(5), 1060. https://doi.org/10.1088/0960-1317/15/5/024
  57. Mindlin, R. D. (1963), "Influence of couple stresses on stress concentrations", Exp. Mech., 3(12), 307-308. https://doi.org/10.1007/BF02327098
  58. Mohamed, N., Eltaher, M. A., Mohamed, S. A. and Seddek, L. F. (2019), "Energy equivalent model in analysis of postbuckling of imperfect carbon nanotubes resting on nonlinear elastic foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737
  59. Mohamed, N., Mohamed, S. A. and Eltaher, M. A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2
  60. Park, W. T., Han, S. C., Jung, W. Y. and Lee, W. H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239
  61. Phung-Van, P., Tran, L. V., Ferreira, A. J. M., Nguyen-Xuan, H. and Abdel-Wahab, M. (2017a), "Nonlinear transient isogeometric analysis of smart piezoelectric functionally graded material plates based on generalized shear deformation theory under thermo-electro-mechanical loads", Nonlinear Dynam., 87(2), 879-894. https://doi.org/10.1007/s11071-016-3085-6
  62. Phung-Van, P., Ferreira, A. J. M., Nguyen-Xuan, H. and Wahab, M. A. (2017b), "An isogeometric approach for size-dependent geometrically nonlinear transient analysis of functionally graded nanoplates", Composites Part B Eng., 118, 125-134. https://doi.org/10.1016/j.compositesb.2017.03.012
  63. Phung-Van, P., Thanh, C. L., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Nonlinear transient isogeometric analysis of FGCNTRC nanoplates in thermal environments", Compos. Struct., 201, 882-892. https://doi.org/10.1016/j.compstruct.2018.06.087
  64. Phung-Van, P., Thai, C. H., Nguyen-Xuan, H. and Wahab, M. A. (2019), "Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis", Compos. Part B Eng., 164, 215-225. https://doi.org/10.1016/j.compositesb.2018.11.036
  65. Rahmani, O., Hosseini, S. A. H., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., 26(5), 607-20. https://doi.org/10.12989/scs.2018.26.5.607
  66. Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeitaba, S. B. (2019), "Nonlinear bending analysis of porous FG thick annular/circular nanoplate based on modified couple stress and two-variable shear deformation theory using GDQM", Steel Compos. Struct., 33(2), 307-318. https://doi.org/10.12989/scs.2019.33.2.307
  67. Sivakumar, N., Kanagasabapathy, H. and Srikanth, H. P. (2018), "Analysis of Perforated Piezoelectric Sandwich Smart Structure Cantilever Beam Using COMSOL", Materials Today: Proceedings, 5(5), 12025-12034. https://doi.org/10.1016/j.matpr.2018.02.177
  68. Thanh, C. L., Phung-Van, P., Thai, C. H., Nguyen-Xuan, H. and Wahab, M. A. (2018), "Isogeometric analysis of functionally graded carbon nanotube reinforced composite nanoplates using modified couple stress theory", Compos. Struct., 184, 633-649. https://doi.org/10.1016/j.compstruct.2017.10.025
  69. Thanh, C. L., Tran, L. V., Vu-Huu, T., Nguyen-Xuan, H. and Abdel-Wahab, M. (2019a), "Size-dependent nonlinear analysis and damping responses of FG-CNTRC micro-plates", Comput. Methods Appl. Mech. Eng., 353, 253-276. https://doi.org/10.1016/j.cma.2019.05.002
  70. Thanh, C. L., Tran, L. V., Bui, T. Q., Nguyen, H. X. and AbdelWahab, M. (2019b), "Isogeometric analysis for size-dependent nonlinear thermal stability of porous FG microplates", Compos. Struct., 221, 110838. https://doi.org/10.1016/j.compstruct.2019.04.010.
  71. Thanh, C. L., Ferreira, A. J. M. and Wahab, M. A. (2019c), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin-Wall. Struct., 145, 106427. https://doi.org/10.1016/j.tws.2019.106427
  72. Thanh, C. L., Tran, L. V., Vu-Huu, T. and Abdel-Wahab, M. (2019d), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Methods Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028
  73. Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
  74. Xiao, Y., Wen, J. and Wen, X. (2012), "Broadband locally resonant beams containing multiple periodic arrays of attached resonators", Physics Letters A, 376(16), 1384-1390. https://doi.org/10.1016/j.physleta.2012.02.059
  75. Yang, F. A. C. M., Chong, A. C. M., Lam, D. C. C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  76. Zhang, Z. J., Zhang, Q. C., Li, F. C., Yang, J. W., Liu, J. W., Liu, Z. Y. and Jin, F. (2019), "Modal characteristics of micro-perforated sandwich beams with square honeycomb-corrugation hybrid cores: A mixed experimental-numerical study", Thin-Wall. Struct., 137, 185-196. https://doi.org/10.1016/j.tws.2019.01.004

Cited by

  1. Vibration of multilayered functionally graded deep beams under thermal load vol.24, pp.6, 2020, https://doi.org/10.12989/gae.2021.24.6.545
  2. Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position vol.39, pp.1, 2021, https://doi.org/10.12989/scs.2021.39.1.051
  3. Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2020, https://doi.org/10.12989/scs.2021.39.1.095
  4. Finite element based stress and vibration analysis of axially functionally graded rotating beams vol.79, pp.1, 2020, https://doi.org/10.12989/sem.2021.79.1.023