DOI QR코드

DOI QR Code

Condition assessment of bridge pier using constrained minimum variance unbiased estimator

  • Tamuly, Pranjal (Department of Civil Engineering, Indian Institute of Technology Guwahati) ;
  • Chakraborty, Arunasis (Department of Civil Engineering, Indian Institute of Technology Guwahati) ;
  • Das, Sandip (Department of Civil Engineering, Indian Institute of Technology Guwahati)
  • 투고 : 2020.04.17
  • 심사 : 2020.09.25
  • 발행 : 2020.12.25

초록

Inverse analysis of non-linear reinforced concrete bridge pier using recursive Gaussian filtering for in-situ condition assessment is the main theme of this work. For this purpose, minimum variance unbiased estimation using unscented sigma points is adopted here. The uniqueness of this inverse analysis lies in its approach for strain based updating of engineering demand parameters, where appropriate bound and constrained conditions are introduced to ensure numerical stability and convergence. In this analysis, seismic input is also identified, which is an added advantage for the structures having no dedicated sensors for earthquake measurement. First, the proposed strategy is tested with a simulated example whose hysteretic properties are obtained from the slow-cyclic test of a frame to investigate its efficiency and accuracy. Finally, the experimental test data of a full-scale bridge pier is used to study its in-situ condition in terms of Park & Ang damage index. Overall the study shows the ability of the augmented minimum variance unbiased estimation based recursive time-marching algorithm for non-linear system identification with the aim to estimate the engineering damage parameters that are the fundamental information necessary for any future decision making for retrofitting/rehabilitation.

키워드

과제정보

Authors wish to acknowledge Dr. Matthew Schoettler and Professor Jose Restrepo for sharing the full-scale bridge pier test data in the public domain (i.e. DESIGNSAFE-CI platform).

참고문헌

  1. Bouc, R. (1967), "Forced vibrations of mechanical systems with hysteresis", Proceedings of the 4th Conference on Nonlinear Oscillations, Prague.
  2. Baber, T.T. and Noori, M.N. (1985), "Random vibration of degrading, pinching systems", J. Eng. Mech., 111(8), 1010-1026. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:8(1010)
  3. Bisht, S.S. and Singh, M.P. (2014), "An adaptive unscented Kalman filter for tracking sudden stiffness changes", Mech. Syst. Signal Pr., 49(1), 181-195. https://doi.org/10.1016/j.ymssp.2014.04.009
  4. Calabrese, A., Strano, S. and Terzo, M. (2018), "Adaptive constrained unscented kalman filtering for realtime nonlinear structural system identification", Struct. Control Health Monit., 25(2), e2084. https://doi.org/10.1002/stc.2084
  5. Chang, C.M., Strano, S. and Terzo, M. (2016), "Modelling of hysteresis in vibration control systems by means of the bouc-wen model", Shock and Vibration.
  6. Chang, G. and Mander, J.B. (1994), "Seismic energy based fatigue damage analysis of bridge columns: Part I-Evaluation of seismic capacity", National Center for Earthquake Engineering Research Buffalo, NewYork.
  7. Chatzi, E.N., Smyth, A.W. and Masri, S.F. (2010), "Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty", Struct. Saf., 32(5), 326-337. https://doi.org/10.1016/j.strusafe.2010.03.008
  8. Gaviria, C.A. and Montejo, L.A. (2019), "Monitoring physical and dynamic properties of reinforced concrete structures during seismic excitations", Constr. Build. Mater., 196, 43-53. https://doi.org/10.1016/j.conbuildmat.2018.11.106
  9. Ghosh, S., Datta, D. and Katakdhond, A.A. (2011), "Estimation of the park-ang damage index for planar multi-storey frames using equivalent single-degree systems", Eng. Struct., 33(9), 2509-2524. https://doi.org/10.1016/j.engstruct.2011.04.023
  10. Gillijns, S. and De Moor, B. (2007a), "Unbiased minimum-variance input and state estimation for linear discrete-time systems", Automatica, 43(1), 111-116. https://doi.org/10.1016/j.automatica.2006.08.002
  11. Gillijns, S. and De Moor, B. (2007b), "Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough", Automatica, 43(5), 934-937. https://doi.org/10.1016/j.automatica.2006.11.016
  12. Gucunski, N., Kee, S., La, H., Basily, B. and Maher, A. (2015), "Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous rabit platform", Struct. Monit. Maint., 2(1), 19-34. https://doi.org/10.12989/smm.2015.2.1.019
  13. Hernandez, E.M. and May, G. (2012), "Dissipated energy ratio as a feature for earthquake-induced damage detection of instrumented structures", J. Eng. Mech., 139(11), 1521-1529. https://doi.org/10.1061/(asce)em.1943-7889.0000534
  14. Ibarra, L.F., Medina, R.A. and Krawinkler, H. (2005), "Hysteretic models that incorporate strength and stiffness deterioration", Earthq. Eng. Struct. D., 34(12), 1489-1511. https://doi.org/10.1002/eqe.495
  15. Ikhouane, F. and Rodellar, J. (2005), "On the hysteretic bouc-wen model", Nonlinear Dynam., 42(1), 63-78. https://doi.org/10.1007/s11071-005-0069-3
  16. Ikhouane, F., Mañosa, V. and Rodellar, J. (2007), "Dynamic properties of the hysteretic bouc-wen model", Systems Control Letters, 56(3), 197-205. https://doi.org/10.1016/j.sysconle.2006.09.001
  17. Julier, S.J. and Uhlmann, J.K. (1997), "New extension of the kalman filter to nonlinear systems", Signal processing, sensor fusion, and target recognition VI, 3068, 182-193.
  18. Kandepu, R., Imsland, L. and Foss, B.A. (2008), "Constrained state estimation using the unscented kalman filter", Proceedings of the 2008 16th Mediterranean Conference on Control and Automation, IEEE.
  19. Lin, S.W., Yi, T.H., Li, H.N. and Ren, L. (2017), "Damage detection in the cable structures of a bridge using the virtual distortion method", J, Bridge Eng., 22(8), 04017039. https://doi.org/10.1061/(asce)be.1943-5592.0001072
  20. Li, H.N., Qu, C., Huo, L. and Nagarajaiah, S. (2016), "Equivalent bilinear elastic single degree of freedom system of multi-degree of freedom structure with negative stiffness", J. Sound Vib., 365, 1-14. https://doi.org/10.1016/j.jsv.2015.11.005
  21. Mandela, R., Kuppuraj, V., Rengaswamy, R. and Narasimhan, S. (2012), "Constrained unscented recursive estimator for nonlinear dynamic systems", J. Process Control, 22(4), 718-728. https://doi.org/10.1016/j.jprocont.2012.02.001
  22. Nair, A., Cai, C., Pan, F. and Kong, X. (2014), "Acoustic emission monitoring of damage progression in cfrp retrofitted rc beams", Struct. Monit. Maint., 1(1), 111-130. https://doi.org/10.12989/smm.2014.1.1.111
  23. Nithin, V.L. (2019), "Stochastic simulation of main shock-aftershock sequences and their use in damage-based seismic design of reinforced concrete structures", Ph.D. Dissertation; Indian Institute of Technology Guwahati, India.
  24. Park, Y.J. and Ang, A.H.S. (1985), "Mechanistic seismic damage model for reinforced concrete", J. Struct. Eng., 111(4), 722-739. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:4(722)
  25. Providakis, C., Tsistrakis, S., Voutetaki, M., Tsompanakis, Y., Stavroulaki, M., Agadakos, J., Kampianakis, E. and Pentes, G. (2015), "A new damage identification approach based on impedance-type measurements and 2d error statistics", Struct. Monit. Maint., 2(4), 319-338. https://doi.org/10.12989/smm.2015.2.4.319
  26. Qu, C.X., Mei, D.P., Yi, T.H. and Li, H.N. (2017), "Spurious mode distinguish by modal response contribution index in eigensystem realization algorithm", Struct. Des. Tall Spec. Build., 27(12), e1491. https://doi.org/10.1002/tal.1491
  27. Qu, C.X., Yi, T.H., Li, H.N. and Chen, B. (2018a), "Closely spaced modes identification through modified frequency domain decomposition", Measurement, 128, 388-392. https://doi.org/10.1016/j.measurement.2018.07.006
  28. Qu, C.X., Yi, T.H., Zhou, Y.Z., Li, H.N. and Zhang, Y.F. (2018b), "Frequency identification of practical bridges through higher-order spectrum", J. Aerosp. Eng., 31(3), 04018018. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000840
  29. Qu, C.X., Yi, T.H. and Li, H.N. (2019). "Mode identification by eigensystem realization algorithm through virtual frequency response function", Struct. Control Health Monit., 26(10), e2429. https://doi.org/10.1002/stc.2429
  30. Rathje, E.M., Dawson, C., Padgett, J.E., Pinelli, J.P., Stanzione, D., Adair, A., Arduino, P., Brandenberg, S. J., Cockerill, T. and Dey, C. (2017), "Designsafe: new cyberinfrastructure for natural hazards engineering", Natural Hazards Review, 18(3), 06017001. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000246
  31. Schoettler, M.J., Restrepo, J., Guerrini, G., Duck, D.E. and Carrea, F. (2012), "A full-scale, single-column bridge bent tested by shake-table excitation", Center for Civil Engineering Earthquake Research, Department of Civil Engineering, University of Nevada.
  32. Shan, J., Ouyang, Y., Zhang, H. and Shi, W. (2019), "Model-reference damage tracking and evaluation of hysteretic structures with test validation", Mech. Syst. Signal Pr., 118, 443-460. https://doi.org/10.1016/j.ymssp.2018.08.016
  33. Sengupta, P. and Li, B. (2013), "Modified Bouc-Wen model for hysteresis behavior of RC beam-column joints with limited transverse reinforcement", Eng. Struct., 46, 392-406. https://doi.org/10.1016/j.engstruct.2012.08.003
  34. Sengupta, P. and Li, B. (2017), "Hysteresis modeling of reinforced concrete structures: state of the art", ACI Struct. J., 114 (1).
  35. Song, W. and Dyke, S. (2013), "Real-time dynamic model updating of a hysteretic structural system", J. Struct. Eng., 140(3), 04013082. https://doi.org/10.1061/(asce)st.1943-541x.0000857
  36. Song, W. (2018), "Generalized minimum variance unbiased joint input-state estimation and its unscented scheme for dynamic systems with direct feedthrough", Mech. Syst. Signal Pr., 99, 886-920. https://doi.org/10.1016/j.ymssp.2017.06.032
  37. Todorovska, Maria I. and Trifunac, Mihailo D. (2007), "Earthquake damage detection in the Imperial County Services Building I: The data and time-frequency analysis", Soil Dynam. Earthq. Eng., 27, 564-576. https://doi.org/10.1016/j.soildyn.2006.10.005
  38. Wei, A., Wang, Y. and Tan, M.Y. (2015), "Monitoring corrosion of reinforced concrete beams in a chloride containing environment under different loading levels", Struct. Monit. Maint., 2(3), 253-267. https://doi.org/10.12989/smm.2015.2.3.253
  39. Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech. Division, 102(2), 249-263. https://doi.org/10.1061/JMCEA3.0002106
  40. Williams, M.S. and Sexsmith, R.G. (1995), "Seismic damage indices for concrete structures: a state-of-the-art review", Earthq. spectra, 11(2), 319-349. https://doi.org/10.1193/1.1585817
  41. Wu, M. and Smyth, A.W. (2007), "Application of the unscented kalman filter for real-time nonlinear structural system identification", Struct. Control Health Monit., 14(7), 971-990. https://doi.org/10.1002/stc.186
  42. Tzoura, E.A., Triantafillou, T.C., Providakis, C., Tsantilis, A., Papanicolaou, C.G. and Karabalis, D. (2015), "Damage detection of reinforced concrete columns retrofitted with FRP jackets by using PZT sensors", Struct. Monit. Maint., 2, 165-180. https://doi.org/10.12989/smm.2015.2.2.165
  43. Yang, Y. and Ma, F. (2003), "Constrained kalman filter for nonlinear structural identification", Modal Anal., 9(12), 1343-1357.
  44. Yi, T.H., Yao, X.J., Qu, C.X. and Li, H.N. (2019), "Clustering number determination for sparse component analysis during output-only modal identification", J. Eng. Mech., 145(1), 04018122. https://doi.org/10.1061/(asce)em.1943-7889.0001557
  45. Zahrah, T.F. and Hall, W.J. (1984), "Earthquake energy absorption in sdof structures", J. Struct. Eng., 110(8), 1757-1772. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:8(1757)
  46. Zhang, C., Huang, J.Z., Song, G.Q., Dai, L. and Li, H.K. (2016), "Detection of structural damage via free vibration responses by extended Kalman filter with Tikhonov regularization scheme", Struct. Monit. Maint., 3(2), 115-127. https://doi.org/10.12989/smm.2016.3.2.115