DOI QR코드

DOI QR Code

Photocatalytic Degradation of Rhodamine B, Methyl Orange and Methylene Blue with CdS and CdZnS/ZnO Catalysts under Visible Light Irradiation

가시광선하에서 CdS와 CdZnS/ZnO 광촉매를 이용한 로다민 B, 메틸 오렌지 및 메틸렌 블루의 광분해 반응

  • Jeon, Hyun Woong (Department of Industrial Chemistry, Pukyong National University) ;
  • Jeong, Min Gyo (Department of Industrial Chemistry, Pukyong National University) ;
  • An, Byeong Yun (Department of Industrial Chemistry, Pukyong National University) ;
  • Hong, Min Seong (Department of Industrial Chemistry, Pukyong National University) ;
  • Seong, Sang Hyeok (Department of Industrial Chemistry, Pukyong National University) ;
  • Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University)
  • 전현웅 (부경대학교 공업화학과) ;
  • 정민교 (부경대학교 공업화학과) ;
  • 안병윤 (부경대학교 공업화학과) ;
  • 홍민성 (부경대학교 공업화학과) ;
  • 성상혁 (부경대학교 공업화학과) ;
  • 이근대 (부경대학교 공업화학과)
  • Received : 2020.11.03
  • Accepted : 2020.12.05
  • Published : 2020.12.31

Abstract

In this study, the photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) was carried out under visible light irradiation using CdS and CdZnS/ZnO photocatalysts prepared by a simple precipitation method. This study focused on examining the effect of physicochemical properties of dye and photocatalyst on the reaction pathway of photocatalytic degradation. The prepared photocatalysts were characterized by XRD, UV-vis DRS and XPS. Both the CdS and CdZnS/ZnO photocatalysts exhibit an excellent absorption in the visible light and the UV light regions. It was observed that the photocatalytic degradation of MO proceeds via the same reaction mechanism on both the CdS and CdZnS/ZnO photocatalysts. However, the photocatalytic degradation of RhB and MB was found to proceed through a different reaction pathway on the CdS and CdZnS/ZnO catalysts. It is interesting to note that MB dimer was formed on the CdS catalyst at the beginning of the photocatalytic reaction, while the MB monomer was degraded during the overall photocatalytic reaction on CdZnS/ZnO. The above results may be mainly ascribed to the difference of band edge potential of the conduction band in the CdS and CdZnS/ZnO semiconductors and the adsorption property of dye on the catalysts.

본 연구에서는 단순 침전법으로 제조한 CdS 및 CdZnS/ZnO 광촉매를 이용하여 가시광선하에서 로다민 B, 메틸 오렌지 및 메틸렌 블루 등에 대한 광분해 반응 연구를 수행하였다. 특히 염료와 광촉매의 물리화학적 성질이 전체 광촉매 반응의 반응 경로에 미치는 영향에 대해 중점을 두고 검토하였다. X선 회절분석법, UV-vis 확산반사 분광법 그리고 X선 광전자 분광분석법 등을 이용하여 제조된 촉매들의 물리화학적 특성을 분석하였다. CdS 및 CdZnS/ZnO 광촉매 모두 자외선뿐만 아니라 가시광선 영역에 있어서도 우수한 광흡수 특성을 나타내었다. 메틸 오렌지의 경우에는 CdS 및 CdZnS/ZnO 각각의 광촉매 상에서 동일한 반응기구를 통해 반응이 진행되는 반면, 로다민 B 및 메틸렌 블루는 각각의 광촉매 상에서 서로 다른 반응 경로를 통해 광분해 반응이 진행되는 것으로 나타났다. 특히 메틸렌 블루의 광분해 반응을 보면, CdZnS/ZnO 광촉매 상에서는 주로 단일분자 형태로 전체 반응이 진행되지만, CdS 상에서는 반응 초기부터 이량체를 형성하였다. 이와 같은 결과들은 CdS 및 CdZnS/ZnO 각각의 반도체 광촉매들의 전도대의 띠끝 전위 차이와 염료들의 흡착 특성 차이에 기인한 것으로 판단된다.

Keywords

References

  1. Neelgund, G. M., and Oki, A., "ZnO Conjugated Graphene: An Efficient Sunlight Driven Photocatalysts for Degradation of Organic Dyes," Mat. Res. Bull., 129, 110911-110919 (2020). https://doi.org/10.1016/j.materresbull.2020.110911
  2. Nath, I., Chakaborty, J., Heynderickx, P. M., and Verport, F., "Engineered Synthesis of Hierarchical Porous Organic Polymers for Visible Light and Natural Sunlight Induced Rapid Degradation of Azo, Thiazine, and Fluorescein Based Dyes in a Unique Mechanistic Pathway," Appl. Catal. B: Environ., 227, 102-113 (2018). https://doi.org/10.1016/j.apcatb.2018.01.032
  3. He, K., Chen, G., Zeng, G., Chen, A., Huang, Z., Shi, J., Huang, T., Peng. M., and Hu, L., "Three-Dimensional Graphene Supported Catalysts for Organic Dyes Degradation," Appl. Catal. B: Environ., 228, 19-28 (2018). https://doi.org/10.1016/j.apcatb.2018.01.061
  4. Chan, S. H. S., Yeong Wu, T. Y., Juan, J. C., and Teh, C. Y., "Recent Developments of Metal Oxide Semiconductors as Photocatalysts in Advanced Oxidation Processes (AOPs) for Treatment of Dye Waste- water," J. Chem. Technol. Biotechnol., 86, 1130-1158 (2011). https://doi.org/10.1002/jctb.2636
  5. Moussa, H., Girot, E., Mozat, K., Alem, H., Medjahdi, G., and Schneider, R., "ZnO Rod/reduced Graphene Oxide Composites Prepared via a Solvothermal Reaction for Efficient Sunlight-Driven Photocatalysis," Appl. Catal. B: Environ., 185, 11-21 (2016). https://doi.org/10.1016/j.apcatb.2015.12.007
  6. Li, X. Z., Li, F. B., Yang, C. L., and Ge, W. K., "Photocatalytic Activity of WOx-TiO2 under Visible Light Irradiation," J. Photochem. Photobiol. A. Chem., 141, 209-217 (2001). https://doi.org/10.1016/S1010-6030(01)00446-4
  7. Lei, Z., You, W., Liu, M., Zhou, G., Takata, T., Hara, M., and Li, C., "Photocatalytic Water Reduction under Visible Light on a Novel ZnIn2S4 Catalyst Synthesized by Hydrothermal Method," Chem. Commun., 2142-2143 (2003).
  8. Ganesh, R. S., Sharma. S. K., Durgadevi, E., Navaneethan, M., Binitha, H. S., Ponnusamy, S., Muthamizhchelvan, C., Hayakawa, Y., and Kim, D. Y., "Surfactant Free Synthesis of CdS Nanospheres, Microstructural Analysis, Chemical Bonding, Optical Properties and Photocatalytic Activities," Superlattices Microstruct., 104, 247-257 (2017). https://doi.org/10.1016/j.spmi.2017.02.029
  9. Yue, X., Yi, S., Wang, R., Zhang, Z., and Qiu, S., "Cadmium Sulfide and Nickel Synergetic Co-Catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution," Sci. Rep., 6, 22268 (2016). https://doi.org/10.1038/srep22268
  10. Sehati, S., and Entezari, M. H., "Sono-Intercalation of CdS Nanoparticles into the Layers of Titanate Facilitates the Sunlight Degradation of Congo Red," J. Colloid Interface Sci., 462, 130-139 (2016). https://doi.org/10.1016/j.jcis.2015.09.070
  11. Li, Q., Meng, H., Zhou, P., Zheng, Y., Wang, J., Yu, J., and Gong, J., "Cd0.5Zn0.5S Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic H2-Production Activity," ACS Catal., 3, 882-889 (2013). https://doi.org/10.1021/cs4000975
  12. Zhu, H., Jianga, R., Xiao, L., Chang, Y., Guan, Y., Li, X., and Zeng, G.,"Photocatalytic Decolorization and Degradation of Congo Red on Innovative Crosslinked Chitosan/Nano-CdS Composite Catalyst under Visible Light Irradiation," J. Hazard. Mater., 169, 933-940 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.037
  13. Zhou, Y., Wang, Y., Wen, T., Zhang, S., Chang, B., Guo, Y., and Yang, B., "Mesoporous Cd1-xZnxS Microspheres with Tunable Bandgap and High Specific Surface Areas for Enhance Visible-Light-Driven Hydrogen Generation," J. Colloid Interface Sci., 467, 97-104 (2016). https://doi.org/10.1016/j.jcis.2016.01.003
  14. Lee, G. D., Park, S. S., Jin, Y., and Hong., S. S., "Recycling Properties of Visible-Light Driven CdZnS/ZnO Photocatalyst Prepared by a Simple Precipitation Method," Clean Technol., 23, 196-204 (2017). https://doi.org/10.7464/ksct.2017.23.2.196
  15. Cui, W., Ma, S., Liu, L., Hu, J., Liang, Y., and McEvoy, J. G., "Photocatalytic Activity of Cd1-xZnxS/K2Ti4O9 for Rhodamine B Degradation under Visible Light Irradiation," Appl. Surf. Sci., 271, 171-181 (2013). https://doi.org/10.1016/j.apsusc.2013.01.156
  16. Lee, S. H., Jeong, Y. J., Lee, J. M., Kim, D. S., Bae, E. J., Hong, S. S., and Lee, G. D., Comparative Studies on Mechanism of Photocatalytic Degradation of Rhodamine B with Sulfide Catalysts under Visible Light Irradiation," Clean Technol., 25, 46-55 (2019). https://doi.org/10.7464/KSCT.2019.25.1.046
  17. Xu, N., Wang, R. L., Li, D. P., Meng, X., Mu, J. L., Zhou, Z. Y., and Su, Z. M., "A New Triazine-Based Covalent Organic Polymer for Efficient Photodegradation of Both Acidic and Basic Dyes under Visible Light," Dalton Trans., 47, 4191-4197 (2018). https://doi.org/10.1039/c8dt00148k
  18. Suresh, P., Murthy, T. N., and Rao, A. P., "Synergetic Visible Light Degradation of Methyl Orange, Rhodamine B and Methylene Blue over Supra Stoichiometric Ferric and Bismuth Molybdates," Int. J. Sci. Res., 4, 2372-2378 (2015).
  19. Zhang, D., Li, J., Wang, Q., and Wu, Q, "High {001} Facets Dominated BiOBr Lamellas: Facile Hydrolysis Preparation and Selective Visible-Light Photocatalytic Activity," J. Mater. Chem. A, 1, 8622-8629 (2013). https://doi.org/10.1039/c3ta11390f
  20. Lee, H. J., Jin, Y., Park, S. S., Hong, S. S., and Lee, G. D., "Photocatalytic Degradation of Rhodamine B Using Cd0.5Zn0.5S/ZnO Photocatalysts under Visible Light Irradiation," Appl. Chem. Eng., 26, 356-361 (2015). https://doi.org/10.14478/ace.2015.1046
  21. Min, Y., Fan, J., Xu, Q., and Zhang, S., "High Visible-Photoactivity of Spherical Cd0.5Zn0.5S Coupled with Grahpene Composite for Decolorizing Organic Dyes," J. Alloy. Compd., 609, 46-53 (2014). https://doi.org/10.1016/j.jallcom.2014.04.143
  22. McBride, R. A., Kelly, J. M., and McCormack, D. E., "Growth of Well-Defined ZnO Microparticles by Hydroxide Ion Hydrolysis of Zinc Salts," J. Mater. Chem., 13, 1196-1201 (2003). https://doi.org/10.1039/b211723c
  23. Li, Y., Tang, L., Peng, S., Li, Z., and Lu, G., "Phosphate-Assisted Hydrothermal Synthesis of Hexagonal CdS for Efficient Photocatalytic Hydrogen Evolution," CrystEngComm., 14, 6974-6982 (2012). https://doi.org/10.1039/c2ce25838b
  24. Zhou, J., and Guo, W., "Inorganic Salt-Induced Phase Control and Optical Characterization of Cadmium Sulfide Nanoparticles," Nanotechnology, 21, 175601-175607 (2010). https://doi.org/10.1088/0957-4484/21/17/175601
  25. Jing, D., and Guo, L., "A Novel Method for the Preparation of a Highly Stable and Active CdS Photocatalyst with a Special Surface Nanostructure," J. Phys. Chem. B, 110, 11139-11145 (2006). https://doi.org/10.1021/jp060905k
  26. Wang, W., Zhu, W., and Xu, H., "Monodisperse, Mesoporous ZnxCd1-xS Nanoparticles as Stable Visible-Light-Driven Photocatalysts," J. Phys. Chem. C, 112, 16754-16758 (2008). https://doi.org/10.1021/jp805359r
  27. Deshpande, A., Shah, P., Gholap, R. S., and Gupta, N. M., "Interfacial and Physico-Chemical Properties of Polymer-Supported CdS⋅ZnS Nanocomposites and Their Role in the Visible-Light Mediated Photocatalytic Splitting of Water," J. Colloid Interface Sci., 333, 263-268 (2009). https://doi.org/10.1016/j.jcis.2009.01.037
  28. Chen, F., Jia, D., Cao, Y., Jin, X., and Liu, A.,"Facile Synthesis of CdS Nanorods with Enhanced Photocatalytic Activity," Ceram. Int., 41, 14604-14609 (2015). https://doi.org/10.1016/j.ceramint.2015.07.179
  29. Xie, S., Lu, X., Zhai, T., Gan, J., Li, W., Xu, M., Yu, M., Zhang, Y.-M., and Tong, Y., "Controllable Synthesis of ZnxCd1-xS@ZnO Core-Shell Nanorods with Enhanced Photocatalytic Activity," Langmuir, 28, 10558-10564 (2012). https://doi.org/10.1021/la3013624
  30. Chen, J., Chen, J., and Li. Y., "Hollow ZnCdS Dodecahedral Cages for Highly Efficient Visible-Light-Driven Hydrogen Generation," J. Mater. Chem. A, 5, 24116-24125 (2017). https://doi.org/10.1039/C7TA07587A
  31. Song, L., Zhang, S., and Wei, J., "WO3 Cocatalyst Improves Hydrogen Evolution Capacity of ZnCdS under Visible Light Irradiation," Int. J. Hydrogen Energ., 44, 16327-16335 (2019). https://doi.org/10.1016/j.ijhydene.2019.04.284
  32. Das, D. and Mondal, P., "Low Temperature Grown ZnO:Ga Films with Predominant c-Axis Orientation in Wurtzite Structure Demonstrating High Conductance, Transmittance and Photoluminescence," RSC Adv., 6, 6144-6153 (2016). https://doi.org/10.1039/C5RA22288E
  33. Li, Q., Li, X., Wageh, S., Al-Ghamdi, A.A., and Yu, J., "CdS/Graphene Nanocomposite Photocatalysts," Adv. Energy Mater., 5, 1500010 (2015). https://doi.org/10.1002/aenm.201500010
  34. Carey, J. H., Lawrence, J., and Tosine, H. M., "Photodechlorination of PCB's in the Presence of Titanium Dioxide in Aqueous Suspensions," Bull. Environ. Contam. Toxicol., 16 , 697-701 (1976). https://doi.org/10.1007/BF01685575
  35. Yu, K., Yang, S., He, H., Sun, C., Gu, C., and Ju, Y., "Visible Light-Driven Photocatalytic Degradation of Rhodamine B over NaBiO3: Pathways and Mechanism," J. Phys. Chem. A, 113, 10024-10032 (2009). https://doi.org/10.1021/jp905173e
  36. Zhuang, J., Dai, W., Tian, Q., Li, Z., Xie, L., Wang, J., and Wang, D., "Photocatalytic Degradation of RhB over TiO2 Bilayer Films: Effect of Defects and Their Location," Langmuir, 26, 9686-9694 (2010). https://doi.org/10.1021/la100302m
  37. Li, X., Zhu, J., and Li, H., "Comparative Study on the Mechanism in Photocatalytic Degradation of Different-Type Organic Dyes on SnS2 and CdS," Appl. Catal. B: Environ., 123, 174-181 (2012). https://doi.org/10.1016/j.apcatb.2012.04.009
  38. Huang, F., Chen, L., Wang, H., Feng, T., and Yan, Z., "Degradation of Methyl Orange by Atmospheric DBD Plasma: Analysis of the Degradation Effects and Degradation Path," J. Electrostat., 70, 43-47 (2012). https://doi.org/10.1016/j.elstat.2011.10.001
  39. Zhu, Y., and Dan, Y., "Photocatalytic Activity of Poly(3-hexylthiophene)/Titanium Dioxide Composites for Degrading Methyl Orange," Sol. Energy Mater. Sol. Cells, 94, 1658-1664 (2010). https://doi.org/10.1016/j.solmat.2010.05.025
  40. Murugan, K., Joardar, J., Ganghi, A. S., Murty, B. S., and Borse, P. H., "Photo-induced Momomer/Dimer Kinetics in Methylene Blue Degradation over Doped and Phase Controlled Nano-TiO2 Films," RSC, Adv., 6, 43563-43573 (2016). https://doi.org/10.1039/C6RA03738K
  41. Voicu, G., Oprea, O., Vasile, B. S., and Andronescu, E., "Photolumescence and Photocatlytic Activity of Mn-doped ZnO Nanoparticles," Digest J. Nanomater. Biostruct., 8, 667-675 (2013).
  42. Ahmed, T., and Edvinsson, T., "Optical Quantum Confinement in Ultrasmall ZnO and the Effect of Size on Their Photocatalytic Activity," J. Phys. Chem. C, 124, 6395-6404 (2020). https://doi.org/10.1021/acs.jpcc.9b11229
  43. Bujdak, J., "The Effects of Layered Nanoparticles and Their Properties on the Molecular Aggregation of Organic Dyes," J. Photochem. Photobiol. C, 35, 108-133 (2018). https://doi.org/10.1016/j.jphotochemrev.2018.03.001
  44. Ji, X. H., Kan, G. Q., Jiang, X. Z., Sun, B., Zhu, M. F., and Sun, Y., "A Monodisperse Anionic Silver Nanoparticles Colloid: Its Selective Adsorption and Excellent Plasmon-Induced Photodegradation of Methylene Blue," J. Colloid Interface Sci., 523, 98-109 (2018). https://doi.org/10.1016/j.jcis.2018.03.011
  45. Martinez-de La Cruz, A., and Alfaro, S. O., "Synthesis and Characterization of Nanoparticles of α-Bi2Mo2O12 Prepared by Coprecipitation Method: Langmuir Adsorption Parameters and Photocatalytic Properties with Rhodamine B," Solid State Sci., 11, 829-835 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.01.007
  46. Zhang, T., ki Oyama, T., Horikoshi, S., Hidaka, H., Zhao, J., and Serpone, N., "Photocatalyzed N-Demethylation and Degrαadation of Methylene Blue in Titania Dispersions Exposed to Concentrated Sunlight," Sol. Energy Mater. Sol. Cells, 73, 287-303 (2002). https://doi.org/10.1016/S0927-0248(01)00215-X
  47. Zhang, T., Oyama, T., Aoshima, A., Hidaka, H., Zhao, J., and Serpone, N., "Photooxidative N-Demethylation of Methylene Blue in Aqueous TiO2 Dispersions under UV Irradiation," J. Photochem. Photobiol. A, 140, 163-172 (2001). https://doi.org/10.1016/S1010-6030(01)00398-7
  48. Chauhan, R., Kumar, A., and Chaudhary, R. P., "Visible-Light Photocatalytic Degradation of Methylene Blue with Fe Doped CdS Nanoparticles," Appl. Surf. Sci., 270, 655-660 (2013). https://doi.org/10.1016/j.apsusc.2013.01.110