References
- Dai, C., Li, Y., Ning, C., Zhang, W., Wang, X., and Zhang, C., "The Influence of Alumina Phases on the Performance of Pd/Al2O3 Catalyst in Selective Hydrogenation of Benzonitrile to Benzylamine", Appl. Catal. A: Gen., 545(5), 97-103 (2017). https://doi.org/10.1016/j.apcata.2017.07.032
- Lott, P., Dolcet, P., Casapu, M., Grunwaldt, J.-D., and Deutschmann, O., "The Effect of Prereduction on the Performance of Pd/Al2O3 and Pd/CeO2 Catalysts during Methane Oxidation", Ind. Eng. Chem. Res., 58(28), 12561-12570 (2019). https://doi.org/10.1021/acs.iecr.9b01267
- Ivanova, A. S., Slavinskaya, E. M., Gulyaev, R. V., Zaikovskii, V. I., Stonkus, O. A., Danilova, I. G., Plyasova, L. M., Polukhina, I. A., and Boronin, A. I., "Metal-Support Interactions in Pt/Al2O3 and Pd/Al2O3 Catalysts for CO Oxidation", Appl. Catal. B: Environ., 97(1-2), 57-71 (2010). https://doi.org/10.1016/j.apcatb.2010.03.024
- Kim, J. G., "Material Flow and Industrial Demand for Palladium in Korea," Resour. Conserv. Recycl., 77, 22-28 (2013). https://doi.org/10.1016/j.resconrec.2013.04.009
- Kolliopoulos, G., Balomenos, E., Giannopoulou, I., Yakoumis, I., and Panias, D., "Behavior of Platinum Group Metals during Their Pyrometallurgical Recovery from Spent Automotive Catalysts," OAlib, 1, 1-9 (2014).
- Panda, R., Dinkar, O. S., Jha, M. K., and Pathak, D. D., "Recycling of Gold from Waste Electronic Components of Devices," Korean J. Chem. Eng., 37(1), 111-119 (2020). https://doi.org/10.1007/s11814-019-0412-x
- Nguyen, T. H., Kumar, B. N., and Lee, M. S., "Selective Recovery of Fe(III), Pd(II), Pt(IV), Rh(III) and Ce(III) from Simulated Leach Liquors of Spent Automobile Catalyst by Solvent Extraction and Cementation," Korean J. Chem. Eng., 33(9), 2684-2690 (2016). https://doi.org/10.1007/s11814-016-0123-5
- Kim, J. S., Kwon, J. S., Baek, J. H., and Lee, M. S., "Recovery of Palladium (Pd) from Spent Catalyst by Dry and Wet Method and Re-preparation of Pd/C Catalyst from Recovered Pd," Appl. Chem. Eng., 29(4), 376-381 (2018). https://doi.org/10.14478/ACE.2018.1022
- Behnamfard, A., Salarirad, M. M., and Veglio, F., "Process Development for Recovery of Copper and Precious Metals from Waste Printed Circuit Boards with Emphasize on Palladium and Gold Leaching and Precipitation," Waste Manag., 33(11), 2354-2363 (2013). https://doi.org/10.1016/j.wasman.2013.07.017
- Harjanto, S., Cao, Y., Shibayama, A., Naitoh, I., Nanami, T., Kasahara, K., Okumura, Y., Liu, K., and Fujita, T., "Leaching of Pt, Pd and Rh from Automotive Catalyst Residue in Various Chloride Based Solutions," Mater. Trans., 47(1), 129-135 (2006). https://doi.org/10.2320/matertrans.47.129
- Angelidis, T. N., "Development of a Laboratory Scale Hydrometallurgical Procedure for the Recovery of Pt and Rh from Spent Automotive Catalysts," Top. Catal., 16(1-4), 419-423 (2001). https://doi.org/10.1023/A:1016641906103
- Palliyarayil, A., Jayakumar, K. K., Sil, S., and Kumar, N. S., "A Facile Green Tea Assisted Synthesis of Palladium Nanoparticles Using Recovered Palladium from Spent Palladium Impregnated Carbon," Johnson Matthey Technol. Rev., 62(1), 60-73 (2018). https://doi.org/10.1595/205651317x696252
- Lu, J., Dreisinger, D. B., and Cooper, W. C., "Cobalt Precipitation by Reduction with Sodium Borohydride," Hydrometallurgy, 45(3), 305-322 (1997). https://doi.org/10.1016/S0304-386X(96)00086-2
- Trinh, H. B., Lee, J. C., Srivastava, R. R., Kim, S., and Ilyas, S., "Eco-Threat Minimization in HCl Leaching of PGMs from Spent Automobile Catalysts by Formic Acid Prereduction," ACS Sustain. Chem. Eng., 5(8), 7302-7309 (2017). https://doi.org/10.1021/acssuschemeng.7b01538
- Chen, J. P., and Lim, L. L., "Key Factors in Chemical Reduction by Hydrazine for Recovery of Precious Metals," Chemosphere, 49(4), 363-370 (2002). https://doi.org/10.1016/S0045-6535(02)00305-3
- Byun, M. Y., Kim, J. S., Baek, J. H., Park, D. W., and Lee, M. S., "Liquid-Phase Hydrogenation of Maleic Acid over Pd/Al2O3 Catalysts Prepared via Deposition-Precipitation Method," Energies, 12(2), 284 (2019). https://doi.org/10.3390/en12020284
- So, H. I., Lee, J. E., Cho, Y. C., Ahn, J. W., and Ryu, H. J., "Leaching of Silver (Ag) from Electronic Scrap by Thiourea," Korean J. Met. Mater., 56(7), 511-517 (2018). https://doi.org/10.3365/kjmm.2018.56.7.511
- Izatt, R. M., Eatough, D., and Christensen, J. J., "A study of Pd2+(aq) Hydrolysis. Hydrolysis Constants and the Standard Potential for the Pd, Pd2+ couple," J. Chem. Soc. A, 1301-1304 (1967).
- Ding, Y., Zheng, H., Li, J., Zhang, S., Liu, B., and Ekberg, C., "An Efficient Leaching of Palladium from Spent Catalysts through Oxidation with Fe(III)," Materials, 12(8), 1205 (2019). https://doi.org/10.3390/ma12081205
- Awadalla, F. T., Molnar, R. E., and Riteey, G. M., "Recovery of Platinum Group Metals (PGM) from Acidic Solutions by Reduction Precipitation with Sodium Borohydride,"U.S. Patent No. 5,304,233 (1994).
- Salinas-Rodriguez, E., Hernandez-Avila, J., Rivera-Landero, I., Cerecedo-Saenz, E., IsabelReyes-Valderrama, M. I., Correa-Cruz, M., and Rubio-Mihi, D., "Leaching of Silver Contained in Mining Tailings, Using Sodium Thiosulfate: A Kinetic Study," Hydrometallurgy, 160, 6-11 (2016). https://doi.org/10.1016/j.hydromet.2015.12.001
- Xie, H., Zhang, L., Li, H., Koppala, S., Yin, S., Li, S., Yang, K., and Zhu, F., "Efficient Recycling of Pb from Zinc Leaching Residues by Using the Hydrometallurgical Method," Mater. Res. Express, 6(7), 075505 (2019). https://doi.org/10.1088/2053-1591/ab11b9
- Paiva, A. P., Ortet, O., Carvalho, G. I., and Nogueira, C. A., "Recovery of Palladium from a Spent Industrial Catalyst through Leaching and Solvent Extraction," Hydrometallurgy, 171, 394-401 (2017). https://doi.org/10.1016/j.hydromet.2017.06.014
- Wu, J., Ahn, J., and Lee, J., "Comparative Leaching Study on Conichalcite and Chalcopyrite under Different Leaching Systems," Korean J. Met. Mater., 57(4), 245-250 (2019). https://doi.org/10.3365/kjmm.2019.57.4.245
- Cao, Y., Harijanto, S., Shibayama, A., Naitoh, I., Nanami, T., Kasahara, K., Okumura, Y., and Fujita, T., "Kinetic Study on the Leaching of Pt, Pd and Rh from Automotive Catalyst Residue by Using Chloride Solutions," Mater. Trans., 47(8), 2015-2024 (2006). https://doi.org/10.2320/matertrans.47.2015
- Lefevre, G., Duc, M., Lepeut, P., Caplain, R., and Fedoroff, M., "Hydration of γ-Alumina in Water and Its Effects on Surface Reactivity", Langmuir, 18(20), 7530-7537 (2002). https://doi.org/10.1021/la025651i
- Dash, B., Das, B. R., Tripathy, B. C., Bhattacharya, I. N., and Das, S. C., "Acid Dissolution of Alumina from Waste Aluminium Dross", Hydrometallurgy, 92(1-2), 48-53 (2008). https://doi.org/10.1016/j.hydromet.2008.01.006
- Puigdomenech, I., https://www.kth.se/che/medusa/downloads-1.386254 (accessed Nov. 2020)
- Ojeda M., and Iglesia, E., "Formic Acid Dehydrogenation on Au-Based Catalysts at Near-Ambient Temperatures," Angew. Chem., 121(26), 4894-4897. https://doi.org/10.1002/ange.200805723
- Gopinath, R., Babu, N. S., Kumar, J. V., Lingaiah, N., and Prasad, P. S. S., "Influence of Pd Precursor and Method of Preparation on Hydrodechlorination Activity of Alumina Supported Palladium Catalysts," Catal. Lett., 120(3-4), 312-319 (2008). https://doi.org/10.1007/s10562-007-9287-2
- Balint, I., Miyazaki, A., and Aika, K., "Alumina Dissolution during Impregnation with PdCl42- in the Acid pH Range," Chem. Mater., 13(3), 932-938 (2001). https://doi.org/10.1021/cm000693i
- Lee, W. J., Hwang, Y. J., Kim, J., Jeong, H., and Yoon, C. W., "Pd2+-Initiated Formic Acid Decomposition: Plausible Pathways for C-H Activation of Formate," ChemPhysChem, 20(10), 1382-1391 (2019). https://doi.org/10.1002/cphc.201801088
- Xu, L., Wu, X. C., and Zhu, J. J., "Green Preparation and Catalytic Application of Pd Nanoparticles," Nanotechnology, 19(30), 305603 (2008). https://doi.org/10.1088/0957-4484/19/30/305603
- Debye, P., "Zerstreuung von Rontgenstrahlen," Ann. Phys. 351(6), 809-823 (1915). https://doi.org/10.1002/andp.19153510606
- Centomo, P., Canton, P., Burato, C., Meneghini, C., and Zecca, M., "Resonant-XRD Characterization of Nanoalloyed Au-Pd catalysts for the Direct Synthesis of H2O2: Quantitative Analysis of Size Dependent Composition of the Nanoparticles", Appl. Sci., 9(15), 2959 (2019). https://doi.org/10.3390/app9152959