Abstract
Ultra-high-speed images that accurately depict the minute movements of objects have become common as low-cost and high-performance cameras that can film at high speeds have emerged. In this paper, the proposed method removes unexpected noise contained in images after input at high speed, and then extracts an area of interest that can represent personal information, such as skin areas, from the image in which noise has been removed. In this paper, noise generated by abnormal electrical signals is removed by applying bilateral filters. A color model created through pre-learning is then used to extract the area of interest that represents the personal information contained within the image. Experimental results show that the introduced algorithms remove noise from high-speed images and then extract the area of interest robustly. The approach presented in this paper is expected to be useful in various applications related to computer vision, such as image preprocessing, noise elimination, tracking and monitoring of target areas, etc.
최근 들어 초고속의 영상 촬영이 가능한 저가이며 성능이 우수한 카메라가 등장함에 따라서 물체의 미세한 움직임까지 정확하게 묘사한 초고속의 영상들이 보편화되고 있는 실정이다. 본 논문에서는 빠른 속도로 입력되는 초고속의 영상으로부터 예기치 않게 포함된 잡음을 제거한 다음, 잡음이 제거된 영상으로부터 피부 영역과 같이 개인 정보를 대표할 수 있는 관심 영역을 추출하는 방법을 제안한다. 본 논문에서는 먼저 입력받은 초고속의 영상으로부터 비정상적인 전기 신호로 인해 발생한 잡음을 양방향의 필터를 적용하여 제거한다. 그런 다음, 사전 학습을 통해 생성한 색상 분포 모델을 사용하여 영상 내에 포함된 개인 정보를 대표하는 관심 영역인 피부 영역을 정확하게 추출한다. 실험 결과에서는 본 연구에서 소개된 알고리즘이 여러 가지의 초고속 영상으로부터 잡음을 제거한 다음 관심 영역을 강인하게 추출한다는 것을 보여준다. 본 논문에서 제시된 접근 방법은 영상 전처리, 잡음 제거, 목표 영역의 추적 및 감시 등과 같은 컴퓨터 비전 및 패턴인식과 관련된 여러 가지의 응용 분야에서 유용하게 사용될 것으로 예상된다.