DOI QR코드

DOI QR Code

Development of carotenoid production process using perenniporia fraxinea

아까시재목버섯 유래 카르테노이드 계열 항산화 물질 생산

  • Kim, Jiwoo (Department of Chemical and Biochemical Engineering Chosun University) ;
  • Lee, Jung Heon (Department of Chemical and Biochemical Engineering Chosun University)
  • 김지우 (조선대학교 생명화학공학과) ;
  • 이중헌 (조선대학교 생명화학공학과)
  • Received : 2020.11.09
  • Accepted : 2020.12.23
  • Published : 2020.12.31

Abstract

In this study, we analyzed the effect of media on the production of carotenoids and mycelia by using Perenniporia fraxinea. Malt extract-based medium with less than 0.1% peptone stimulated the production of carotenoids, and the one with more than 0.2% peptone inhibited its production. P. fraxinea grown in medium without malt extract did not produce carotenoids, although a small amount of peptone was added to the medium.After carotenoid production, the culture broth was separated using simple centrifugation and the supernatant was harvested as a carotenoid solution. Ethanol was used to extract carotenoids from mycelia. Carotenoid solution separated or extracted from the culture solution showed DPPH radical scavenging activity. The antioxidant carotenoids produced by P. fraxinea are derived from natural products, have no toxicity and side effects, and exhibit excellent antioxidant effects; therefore, they can be effectively used to remove oxides produced by active oxygen.

이 연구에서는 Perenniporia fraxinea를 사용하여 배지가 카르테노이드 생성 및 균사 성장에 미치는 영향을 분석했습니다. 0.1% 미만의 펩톤을 함유한 맥아추출물은 카르테노이드의 생성을 촉진했으며 0.2% 이상의 펩톤이 그 생산을 억제하는 것으로 나타났다. 맥아추출물이 없으면 Perenniporia fraxinea는 소량의 펩톤 첨가에도 불구하고 카르테노이드를 생산하지 못했다. 아카시재목버섯의 배양을 통하여 생산된 균사체를 원심분리로 배양액을 분리하여 상층액을 카르테노이드 용액으로 회수가 가능하였다. 균사체 내부에 축적된 카르테노이드는 에탄올을 사용하여 추출하였다. 배양액에서 분리 또는 추출한 카르테노이드 용액은 우수한 DPPH 라디칼 소거 활성을 나타냈다. 본 연구에서 생산된 항산화 카르테노이드는 천연물 유래 물질로 독성 및 부작용이 없으며 항산화 효과가 우수하여 활성산소에 의해 생성된 산화물을 효과적으로 제거할 수 있다.

Keywords

References

  1. Abugri DA, Tiimob BJ, Apalangya VA, Pritchett G, McElhenney WH. 2013. Bioactive and nutritive compounds in Sorghum bicolor (Guinea corn) red leaves and their health implication. Food Chem 138: 718-723. https://doi.org/10.1016/j.foodchem.2012.09.149
  2. Abul HM, Pervin M, Debnath T, Lim BO. 2014. DNA protection, total phenolics and antioxidant potential of the mushroom russula virescens. J Food Biochem 38: 6-17. https://doi.org/10.1111/jfbc.12019
  3. Alam N, Sikder MM, Karim MA, Amin SMR. 2019. Antioxidant and antityrosinase activities of milky white mushroom. Bangl J Bot 48: 1065-1073. https://doi.org/10.3329/bjb.v48i4.49054
  4. Aprotosoaie AC, Zavastin DE, Mihai CT, Voichita G, Gherghel D, Silion M, Trifan A, Miron A. 2017. Antioxidant and antigenotoxic potential of ramaria largentii mearr & D. E. Stuntz, a wild edible mushroom collected from Northeast Romania. Food Chem Toxicol 108: 429-437. https://doi.org/10.1016/j.fct.2017.02.006
  5. Barros L, Baptista P, Ferreira ICFR. 2007. Effect of lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food Chem Toxicol 45: 1731-1737. https://doi.org/10.1016/j.fct.2007.03.006
  6. Borderes J, Costa A, Guedes A, Tavares LBB. 2011. Antioxidant activity of the extracts from pycnoporus sanguineus mycelium. Braz Arch Biol Techn 54: 1167-1174. https://doi.org/10.1590/S1516-89132011000600012
  7. Dogan HH, Akbas G. 2013. Biological activity and fatty acid composition of Caesar's mushroom. Pharm Biol 51: 863-871. https://doi.org/10.3109/13880209.2013.768272
  8. Im KH, Nguyen TK, Shin DB, Lee KR, Lee TS. 2014. Appraisal of antioxidant and anti-inflammatory activities of various extracts from the fruiting bodies of pleurotus florida. Molecules 19: 3310-3326. https://doi.org/10.3390/molecules19033310
  9. Kim JS, Kim JE, Choi BS, Park SE, Sapkota K, Kim S, Lee HH, Kim CS, Park Y, Kim MK, Kim YS, Kim SJ. 2008. Purification and characterization of fibrinolytic metalloprotease from perenniporia fraxinea mycelia. Mycological Research 112: 990-998. https://doi.org/10.1016/j.mycres.2008.01.029
  10. Lin JT, Liu CW, Chen YC, Hu CC, Juang LD, Shiesh CC, Yang DJ, 2014. Chemical composition, antioxidant and anti-inflammatory properties for ethanolic extracts from pleurotus eryngii fruiting bodies harvested at different time. Lwt-Food Sci Technol 55: 374-382. https://doi.org/10.1016/j.lwt.2013.08.023
  11. Ozen T, Kizil D, Yenigun S, Cesur H, Turkekul I. 2019. Evaluation of bioactivities, phenolic and metal content of ten wild edible mushrooms from Western Black Sea region of Turkey. Int J Med Mushrooms 21: 979-994. https://doi.org/10.1615/IntJMedMushrooms.2019031927
  12. Sharma SK, Gautam N. 2016. Evaluation of nutritional, nutraceutical, and antioxidant composition of eight wild culinary mushrooms (higher basidiomycetes) from the Northwest Himalayas. Int J Med Mushrooms 18: 539-546. https://doi.org/10.1615/intjmedmushrooms.v18.i6.80
  13. Yoshikawa K, Koso K, Shimomura M, Tanaka M, Yamamoto H, Imagawa H, Arihara S, Hashimoto T. 2013. Yellow pigments, fomitellanols A and B, and drimane sesquiterpenoids, cryptoporic acids P and Q, from fomitella fraxinea and their inhibitory activity against COX and 5-LO. Molecules 18: 4181-4191. https://doi.org/10.3390/molecules18044181
  14. Zheng QW, Wei T, Lin Y, Ye ZW, Lin JF, Guo LQ, Yun F, Kang LZ. 2019. Developing a novel two-stage process for carotenoid production by cordyceps militaris (ascomycetes). Int J Med Mushrooms 21: 47-57. https://doi.org/10.1615/intjmedmushrooms.2018029002