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ON SOME NEW FRACTIONAL HERMITE-HADAMARD

TYPE INEQUALITIES FOR CONVEX AND

CO-ORDINATED CONVEX FUNCTIONS

Muhammad Aamir Ali, Hüseyin Budak, and Sadia Sakhi

Abstract. In this study, some new inequalities of Hermite-Hadamard
type for convex and co-ordinated convex functions via Riemann-
Liouville fractional integrals are derived. It is also shown that the
results obtained in this paper are the extension of some earlier ones.

1. Introduction

The Hermite-Hadamard inequality, which is the first fundamental result
for convex mappings with a natural geometrical interpretation and many
applications have drawn attention much interest in elementary mathe-
matics. Several mathematicians have devoted their efforts to generalize,
refine, counterpart and extend it for different classes of functions such
as using convex mappings.
The inequalities discovered by C. Hermite and J. Hadamard for convex
functions are considerable significance in the literature (see, e.g., [16,
p.137], [9]). These inequalities state that if f : I → R is a convex
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function on the interval I of real numbers and a, b ∈ I with a < b, then

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
.

Both inequalities hold in the reversed direction if f is concave. For the
further study of this area, one can consult [1]- [7], [13], [14].

In [10], the authors gave an inequality (1.1) for twice differentiable
functions and they raised the succeeding problem:

do there exist real numbers q, Q such that

f

(
a+ b

2

)
≤ q ≤ 1

b− a

∫ b

a

f(x)dx ≤ Q ≤ f (a) + f (b)

2
?

where f is convex function.

After that, in [11], Farissi gave a favorable answer to the above-given
problem and found the following values of q and Q:

(1.2) f

(
a+ b

2

)
≤ q(ω) ≤ 1

b− a

∫ b

a

f(x)dx ≤ Q(ω) ≤ f (a) + f (b)

2

where

q (ω) = ωf

(
ωb+ (2− ω) a

2

)
+ (1− ω) f

(
(1 + ω) b+ (1− ω) a

2

)
,

Q (ω) =
1

2
(f (ωb+ (1− ω) a) + ωf (a) + (1− ω) f (b)) .

Inspired by this work of Farissi, Chen gave these values of Hermite-
Hadamard inequalities for co-ordinated convex functions as follows:

Theorem 1. [8] Let f : ∆ = [a, b] × [c, d] → R be a co-ordinated
convex function, then we have following inequality for all ω, µ ∈ [0, 1]

f

(
a+ b

2
,
c+ d

2

)
≤ q (ω, µ) ≤

∫ b

a

∫ d

c

f (x, y) dydx ≤ Q (ω, µ)

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

(1.3)
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where

q (ω, µ)

= ωµf

(
ωb+ (2− ω) a

2
,
µd+ (2− µ) c

2

)
+ω (1− µ) f

(
ωb+ (2− ω) a

2
,
(1 + µ) d+ (1− µ) c

2

)
+ (1− ω)µf

(
(1 + ω) b+ (1− ω) a

2
,
µd+ (2− µ) c

2

)
+ (1− ω) (1− µ) f

(
(1 + ω) b+ (1− ω) a

2
,
(1 + µ) d+ (1− µ) c

2

)
and

Q (ω, µ)

=
ωµ

4
f (a, c) +

ω (1− µ)

4
f (a, d) +

(1− ω)µ

4
f (b, c) +

(1− ω) (1− µ)

4
f (b, d)

+
f (ωb+ (1− ω) a, µd+ (1− µ) c)

4
+
ω

4
f (a, µd+ (1− µ) c)

+
1− ω

4
f (b, µd+ (1− µ) c) +

µ

4
f (ωb+ (1− ω) a, c)

+
1− µ

4
f (ωb+ (1− ω) a, d) .

The main objective of this paper is to give the fractional variant of
inequalities (1.2) and (1.3).

2. Preliminaries

In this section, we review the definitions of Rieman Liouville fractional
integrals for single and two variables functions.

Definition 1. [12] Let f ∈ L1[a, b]. The Riemann-Liouville integrals
Jαa+f and Jαb− of order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, a < x
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and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b

respectively. Here Γ(α) is Gamma function and J0
a+f(x) = J0

b−f(x) =
f(x).

In [18], Sarikaya et al. gave the following Hermite-Hadamard inequal-
ities concerned with the last fractional integrals.

Theorem 2. [18] Let f : [a, b] → R be a positive function with
0 ≤ a < b and f ∈ L1[a, b]. If f is a convex function on [a, b], then the
following inequalities for fractional integrals hold:

(2.1) f

(
a+ b

2

)
≤ Γ(α + 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] ≤ f(a) + f(b)

2
,

where α > 0.

Example 1. A function f (x) = x2 is a convex function. The above
inequality (2.1) holds for the given f (x).

Solution 1. For α = 1
2
, a = 1, and b = 2, we have

Γ(α + 1)

2(b− a)α
[Jαa+f(b) + Jαb−f(a)] = 2.36,

f

(
a+ b

2

)
= 2.25,

and

f(a) + f(b)

2
= 2.5.

Thus, the inequality (2.1) is true.

In [17], Sarikaya offered the following Riemann-Liouville fractional
integrals and associated inequalities of Hermite-Hadamard type:

Definition 2. [17] Let f ∈ L1 ([a, b]× [c, d]) . Then Riemann-Liouville

integrals Jα,βa+,c+, J
α,β
a+,d−, J

α,β
b−,c+ and Jα,βb−,d− of order α, β > 0 with a, c ≥ 0
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are defined by

Jα,βa+,c+f (x, y) =
1

Γ (α) Γ (β)

∫ x

a

∫ y

c

(x− t)α−1 (y − s)β−1 f (t, s) dtds,

x > a, y > c,

Jα,βa+,d−f (x, y) =
1

Γ (α) Γ (β)

∫ x

a

∫ d

y

(x− t)α−1 (s− y)β−1 f (t, s) dtds,

x > a, y < d,

Jα,βb−,c+f (x, y) =
1

Γ (α) Γ (β)

∫ b

x

∫ y

c

(t− x)α−1 (y − s)β−1 f (t, s) dtds,

x < b, y > c

and

Jα,βb−,d−f (x, y) =
1

Γ (α) Γ (β)

∫ b

x

∫ d

y

(t− x)α−1 (s− y)β−1 f (t, s) dtds,

x < b, y < d,

respectively. Here Γ is a gamma function,

J0,0
a+,c+f (x, y) = J0,0

a+,d−f (x, y) = J0,0
b−,c+f (x, y) = J0,0

b−,d−f (x, y) = f (x, y) .

Theorem 3. [17] Let f : ∆ ⊂ R2 → R be a co-oedinated convex
function on ∆ := [a, b] × [c, d] in R2 with 0 ≤ a < b, 0 ≤ c < d and
f ∈ L1 (∆) . Then we have following inequalities for double fractional
integrals:

f

(
a+ b

2
,
c+ d

2

)
≤ Γ (α + 1) Γ (β + 1)

4 (b− a)α (d− c)β
[
Jα,βa+,c+f (b, d) + Jα,βa+,d−f (b, c)

+Jα,βb−,c+f (a, d) + Jα,βb−,d−f (a, c)
]

(2.2)

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

3. Key Results

For brevity, we use the following notations in upcoming new results:

∆1 = [a, ωb+ (1− ω) a] , ∆2 = [ωb+ (1− ω) a, b] .

and
∆ = [a, b]× [c, d] = ∆3 ∪∆4 ∪∆5 ∪∆6
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where

∆3 = [a, ωb+ (1− ω) a]× [c, µd+ (1− µ) c] ,

∆4 = [a, ωb+ (1− ω) a]× [µd+ (1− µ) c, d] ,

∆5 = [ωb+ (1− ω) a, b]× [c, µd+ (1− µ) c] ,

∆6 = [ωb+ (1− ω) a, b]× [µd+ (1− µ) c, d] .

Theorem 4. Suppose that f : I → R is a convex function, then
following inequalities hold for all ω ∈ [0, 1] ,

f

(
a+ b

2

)
≤ q (ω) ≤ Γ (α + 1)

2 (b− a)α
Iα (f) ≤ Q (ω) ≤ f (a) + f (b)

2
,

where

Iα (f) =
1

ωα−1
[
Jαa+f (ωb+ (1− ω) a) + Jα(ωb+(1−ω)a)−f (a)

]
+

1

(1− ω)α−1
[
Jαb−f (ωb+ (1− ω) a) + Jα(ωb+(1−ω)a)+f (b)

]
,

q (ω) = ω

(
f

(
ωb+ (2− ω) a

2

)
+ (1− ω) f

(
(1 + ω) b+ (1− ω) a

2

))
,

Q (ω) =
1

2
(f (ωb+ (1− ω) a) + ωf (a) + (1− ω) f (b))

and α > 0.

Proof. From inequalities in (2.1) over the ∆1, we have

f

(
ωb+ (2− ω) a

2

)
≤ Γ (α + 1)

2ωα (b− a)α
[
Jαa+f (ωb+ (1− ω) a) + Jα(ωb+(1−ω)a)−f (a)

]
(3.1)

≤ f (a) + f (ωb+ (1− ω) a)

2
.

Again from inequalities in (2.1) over ∆2, we find that

f

(
(1 + ω) b+ (1− ω) a

2

)
(3.2)

≤ Γ (α + 1)

2 (1− ω)α (b− a)α
[
Jα(ωb+(1−ω)a)+f (b) + Jαb−f (ωb+ (1− ω) a)

]
≤ f (b) + f (ωb+ (1− ω) a)

2
.
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Multiplying (3.1), (3.2) by ω and (1− ω), respectively. After that,
adding the resultant inequalities, we obtain that

(3.3) q (ω) ≤ Γ (α + 1)

2 (b− a)α
Iα (f) ≤ Q (ω) .

Since f is convex function, so we have

f

(
a+ b

2

)
(3.4)

= f

(
ω

(
ωb+ (1− ω) a+ a

2

)
+ (1− ω)

(
ωb+ (1− ω) a+ b

2

))
≤ ωf

(
ωb+ (1− ω) a+ a

2

)
+ (1− ω) f

(
ωb+ (1− ω) a+ b

2

)
≤ 1

2
(f (ωb+ (1− ω) a) + ωf (a) + (1− ω) f (b))

≤ f (a) + f (b)

2
.

From (3.3) and (3.4), we conclude the desired inequality.

Remark 1. Under the hypothesis of Theorem 4 with α = 1, we
have [11, Theorem 1.1].

Corollary 1. Under the same conditions and notations stated in
Theorem 4, we have the following new inequalities

f

(
a+ b

2

)
≤ sup

ω∈[0,1]
q (ω) ≤ Γ (α + 1)

2 (b− a)α
Iα (f) ≤ inf

ω∈[0,1]
Q (ω) ≤ f (a) + f (b)

2
.

Theorem 5. Let f : ∆ → R be a co-ordinated convex function and
f ∈ L (∆) , then the following inequalities satisfy for all ω, µ ∈ [0, 1] :

f

(
a+ b

2
,
c+ d

2

)
≤ q (ω, µ) ≤ Γ (α + 1) Γ (β + 1)

4 (b− a)α (d− c)β
Iα,β (f) ≤ Q (ω, µ)

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4

where
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Iα,β (f) =
1

ωα−1µβ−1

{
Jα,βa+,c+f (ωb+ (1− ω) a, µd+ (1− µ) c)

+Jα,βa+,(µd+(1−µ)c)−f (ωb+ (1− ω) a, c) + Jα,β(ωb+(1−ω)a)−,c+f (a, µd+ (1− µ) c)

+Jα,β(ωb+(1−ω)a)−,(µd+(1−µ)c)−f (a, c)
}

+
1

ωα−1 (1− µ)β−1

{
Jα,βa+,(µd+(1−µ)c)+f (ωb+ (1− ω) a, d)

+Jα,βa+,d−f (ωb+ (1− ω) a, µd+ (1− µ) c) + Jα,β(ωb+(−ω)a)−,(µd+(1−µ)c)+f (a, d)

+Jα,β(ωb+(−ω)a)−,d−f (a, µd+ (1− µ) c)
}

+
1

(1− ω)α−1 µβ−1

{
Jα,β(ωb+(1−ω)a)+,c+f (b, µd+ (1− µ) c)

+Jα,β(ωb+(1−ω)a)+,(µd+(1−µ)c)−f (b, c) + Jα,βb−,c+f (ωb+ (1− ω) a, µd+ (1− µ) c)

+Jα,βb−,(µd+(1−µ)c)−f (ωb+ (1− ω) a, c)
}

+
1

(1− ω)α−1 (1− µ)β−1

{
Jα,β(ωb+(1−ω)a)+,(µd+(1−µ)c)+f (b, d)

+Jα,β(ωb+(1−ω)a)+,d−f (b, µd+ (1− µ) c) + Jα,βb−,(µd+(1−µ)c)+f (ωb+ (1− ω) a, d)

+Jα,βb−,d−f (ωb+ (1− ω) a, µd+ (1− µ) c)
}
,

and α, β > 0.

Proof. From inequalities given in(2.2) for ∆3, ∆4, ∆5, ∆6 with ω 6=
0, 1 and µ 6= 0, 1, we get that

(3.5) f

(
ωb+ (2− ω) a

2
,
µd+ (2− µ) c

2

)
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≤ Γ (α + 1) Γ (β + 1)

4ωαµβ (b− a)α (d− c)β

×
[
Jα,βa+,c+f (ωb+ (1− ω) a, µd+ (1− µ) c)

+Jα,βa+,(µd+(1−µ)c)−f (ωb+ (1− ω) a, c)

+Jα,β(ωb+(1−ω)a)−,c+f (a, µd+ (1− µ) c)

+Jα,β(ωb+(1−ω)a)−,(µd+(1−µ)c)−f (a, c)
]

≤ 1

4
[f (a, c) + f (a, µd+ (1− µ) c) + f (ωb+ (1− ω) a, c)

+f (ωb+ (1− ω) a, µd+ (1− µ) c)] ,

f

(
ωb+ (2− ω) a

2
,
(1 + µ) d+ (1− µ) c

2

)
(3.6)

≤ Γ (α + 1) Γ (β + 1)

4ωα (1− µ)β (b− a)α (d− c)β

×
[
Jα,βa+,(µd+(1−µ)c)+f (ωb+ (1− ω) a, d)

+Jα,βa+,d−f (ωb+ (1− ω) a, µd+ (1− µ) c)

+Jα,β(ωb+(−ω)a)−,(µd+(1−µ)c)+f (a, d)

+Jα,β(ωb+(−ω)a)−,d−f (a, µd+ (1− µ) c)
]

≤ 1

4
[f (a, µd+ (1− µ) c) + f (a, d)

+f (ωb+ (−ω) a, µd+ (1− µ) c) + f (ωb+ (−ω) a, d)] ,
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f

(
(1 + ω) b+ (1− ω) a

2
,
µd+ (2− µ) c

2

)
(3.7)

≤ Γ (α + 1) Γ (β + 1)

4 (1− ω)α µβ (b− a)α (d− c)β

×
[
Jα,β(ωb+(1−ω)a)+,c+f (b, µd+ (1− µ) c)

+Jα,β(ωb+(1−ω)a)+,(µd+(1−µ)c)−f (b, c)

+Jα,βb−,c+f (ωb+ (1− ω) a, µd+ (1− µ) c)

+Jα,βb−,(µd+(1−µ)c)−f (ωb+ (1− ω) a, c)
]

≤ 1

4
[f (ωb+ (1− ω) a, c) + f (ωb+ (1− ω) a, µd+ (1− µ) c)

+f (b, c) + f (b, µd+ (1− µ) c)] ,

f

(
(1 + ω) b+ (1− ω) a

2
,
(1 + µ) d+ (1− µ) c

2

)
(3.8)

≤ Γ (α + 1) Γ (β + 1)

4 (1− ω)α (1− µ)β (b− a)α (d− c)β

×
[
Jα,β(ωb+(1−ω)a)+,(µd+(1−µ)c)+f (b, d)

+Jα,β(ωb+(1−ω)a)+,d−f (b, µd+ (1− µ) c)

+Jα,βb−,(µd+(1−µ)c)+f (ωb+ (1− ω) a, d)

+Jα,βb−,d−f (ωb+ (1− ω) a, µd+ (1− µ) c)
]
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≤ 1

4
[f (ωb+ (1− ω) a, µd+ (1− µ) c) + f (ωb+ (1− ω) a, d)

+f (b, µd+ (1− µ) c) + f (b, d)] .

Multiplying (3.5), (3.6), (3.7) and (3.8) by ωµ, ω (1− µ) , (1− ω)µ and
(1− ω) (1− µ) , respectively. After that, adding the resultant inequali-
ties, we found that

ωµf

(
ωb+ (2− ω) a

2
,
µd+ (2− µ) c

2

)
(3.9)

+ω (1− µ) f

(
ωb+ (2− ω) a

2
,
(1 + µ) d+ (1− µ) c

2

)
+ (1− ω)µf

(
(1 + ω) b+ (1− ω) a

2
,
µd+ (2− µ) c

2

)
+ (1− ω) (1− µ) f

(
(1 + ω) b+ (1− ω) a

2
,
(1 + µ) d+ (1− µ) c

2

)
= q (ω, µ)

≤ Γ (α + 1) Γ (β + 1)

4 (b− a)α (d− c)β

×
[

1

ωα−1µβ−1

{
Jα,βa+,c+f (ωb+ (1− ω) a, µd+ (1− µ) c)

+Jα,βa+,(µd+(1−µ)c)−f (ωb+ (1− ω) a, c)

+Jα,β(ωb+(1−ω)a)−,c+f (a, µd+ (1− µ) c)

+Jα,β(ωb+(1−ω)a)−,(µd+(1−µ)c)−f (a, c)
}

+
1

ωα−1 (1− µ)β−1

{
Jα,βa+,(µd+(1−µ)c)+f (ωb+ (1− ω) a, d)

+Jα,βa+,d−f (ωb+ (1− ω) a, µd+ (1− µ) c)

+Jα,β(ωb+(−ω)a)−,(µd+(1−µ)c)+f (a, d)
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+Jα,β(ωb+(−ω)a)−,d−f (a, µd+ (1− µ) c)
}

+
1

(1− ω)α−1 µβ−1

{
Jα,β(ωb+(1−ω)a)+,c+f (b, µd+ (1− µ) c)

+Jα,β(ωb+(1−ω)a)+,(µd+(1−µ)c)−f (b, c)

+Jα,βb−,c+f (ωb+ (1− ω) a, µd+ (1− µ) c)

+Jα,βb−,(µd+(1−µ)c)−f (ωb+ (1− ω) a, c)
}

+
1

(1− ω)α−1 (1− µ)β−1

{
Jα,β(ωb+(1−ω)a)+,(µd+(1−µ)c)+f (b, d)

+Jα,β(ωb+(1−ω)a)+,d−f (b, µd+ (1− µ) c)

+Jα,βb−,(µd+(1−µ)c)+f (ωb+ (1− ω) a, d)

+Jα,βb−,d−f (ωb+ (1− ω) a, µd+ (1− µ) c)
}]

≤ ωµ

4
[f (a, c) + f (a, µd+ (1− µ) c) + f (ωb+ (1− ω) a, c)

+f (ωb+ (1− ω) a, µd+ (1− µ) c)]

+
ω (1− µ)

4
[f (a, µd+ (1− µ) c) + f (a, d)

+f (ωb+ (−ω) a, µd+ (1− µ) c) + f (ωb+ (−ω) a, d)]

+
(1− ω)µ

4
[f (ωb+ (1− ω) a, c)

f (ωb+ (1− ω) a, µd+ (1− µ) c)
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+f (b, c) + f (b, µd+ (1− µ) c)]

+
(1− ω) (1− µ)

4
[f (ωb+ (1− ω) a, µd+ (1− µ) c)

+f (ωb+ (1− ω) a, d)

+f (b, µd+ (1− µ) c) + f (b, d)]

=
ωµ

4
f (a, c) +

ω (1− µ)

4
f (a, d)

+
(1− ω)µ

4
f (b, c) +

(1− ω) (1− µ)

4
f (b, d)

+
f (ωb+ (1− ω) a, µd+ (1− µ) c)

4

+
ω

4
f (a, µd+ (1− µ) c)

+
1− ω

4
f (b, µd+ (1− µ) c) +

µ

4
f (ωb+ (1− ω) a, c)

+
1− µ

4
f (ωb+ (1− ω) a, d)

= Q (ω, µ) .

Since f is co-ordinated convex function, so we obtain that

f

(
a+ b

2
,
c+ d

2

)
(3.10)

= f

(
ω ωb+(2−ω)a

2
+ (1− ω) (1+ω)b+(1−ω)a

2
,

µµd+(2−µ)c
2

+ (1− µ) (1+µ)d+(1−µ)c
2

)
≤ ωµf

(
ωb+ (2− ω) a

2
,
µd+ (2− µ) c

2

)
+ω (1− µ) f

(
ωb+ (2− ω) a

2
,
(1 + µ) d+ (1− µ) c

2

)
+ (1− ω)µf

(
(1 + ω) b+ (1− ω) a

2
,
µd+ (2− µ) c

2

)
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+ (1− ω) (1− µ) f

(
(1 + ω) b+ (1− ω) a

2
,
(1 + µ) d+ (1− µ) c

2

)
= q (ω, µ) .

Moreover, we have

Q (ω, µ)(3.11)

≤ ωµ

4
f (a, c) +

ω (1− µ)

4
f (a, d)

+
(1− ω)µ

4
f (b, c) +

(1− ω) (1− µ)

4
f (b, d)

+
(1− ω) (1− µ)

4
f (a, c) +

(1− ω)µ

4
f (a, d)

+
ω (1− µ)

4
f (b, c) +

ωµ

4
f (b, d)

+
ωµ

4
f (a, d) +

ω (1− µ)

4
f (a, c)

+
(1− ω)µ

4
f (b, d) +

(1− ω) (1− µ)

4
f (b, c)

+
µω

4
f (b, c) +

(1− ω)µ

4
f (a, c)

+
ω (1− µ)

4
f (b, d) +

(1− ω) (1− µ)

4
f (a, d)

=
f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

By (3.9), (3.10) and (3.11), we conclude the required inequality.

Remark 2. Under the same assumptions given stated in Theorem 5
with α = β = 1, then we have [8, Theorem 2.1].

Remark 3. Under the same assumptions stated in Theorem 5 with
ω = µ = 1

2
and α = β = 1, then we have result of [15, Theorem 2.6].
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Corollary 2. Under the same conditions and notations stated in
Theorem 5, we have following inequalities

f

(
a+ b

2
,
c+ d

2

)
≤ sup

ω,µ∈[0,1]
q (ω, µ) ≤ Iα,β (f)

≤ inf
ω,µ∈[0,1]

Q (ω, µ)

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
.

4. Conclusion

In this investigation, a new fractional version of Hermite-Hadamard
type inequalities for convex and co-ordinated convex functions is derived.
Some existing and new inequalities are also obtained in the special cases
of the main results. The authors hope that this work may stimulate
further research in different areas of pure and applied sciences.
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University, Düzce-TURKEY
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