
Korean J. Math. 28 (2020), No. 4, pp. 943–953
http://dx.doi.org/10.11568/kjm.2020.28.4.943

SCORE NORMALIZATION FOR A UNIVERSITY

GRADES INPUT SYSTEM USING A NEURAL

NETWORK

Young Ho Park

Abstract. A university grades input system requires for professors
to enter the normalized total scores for the letter grades and to input
the scores from six fields such as Midterm, Final, Quiz which sum
up to the total. All six fields have specified bounds which add up
to 100. Professors should scale in the total scores to match up the
letter grades and scale in every field of each student’s original scores
within the bounds to sum up to the scaled total score. We solve this
problem by a novel design of simple shallow neural network.

1. Problem

Suppose a professor has a final score sheet of a university class, part
of which is shown at Figure 1. Each row shows scores from six fields
labeled 0 to 5 as Midterm(15), Final(15), Quiz(30), Homework(20), At-
tendance(15), Others(5) of a student. Here, the numbers in parenthesis
are the maximum possible scores which sum up to 100. Let N be the
number of students. Then raw scores table is an array of size N×6. The
letter grade in field 7 is manually determined by the professor based on
the total score entered in field 6. Actually, the cuts for letter grades in
this example were given by

C = [83, 75, 65, 58, 55, 47, 40, 33].

Received November 11, 2020. Revised December 23, 2020. Accepted December
24, 2020.

2010 Mathematics Subject Classification: 68T07.
Key words and phrases: Neural networks, Regression.
© The Kangwon-Kyungki Mathematical Society, 2020.
This is an Open Access article distributed under the terms of the Creative com-

mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.

944 Young Ho Park

Figure 1. Score sheet

For example, if the total score T of a student is such that 75 ≤ T < 83,
then the student will get the grade A0.

The university grade input system requires professors to enter nor-
malized total scores for the letter grades of students:

A+ A0 B+ B0 C+ C0 D+ D0 F

100∼95 94∼90 89∼85 84∼80 79∼75 74∼70 69∼65 64∼60 59∼0

Then the letter grades will be determined automatically by the sys-
tem. Furthermore, it also requires to input every score in integer. Hence
the professor should scale in the total scores to match up the letter grades
and scale in every field of each student’s scores to sum up the scaled to-
tal score. However, it is quite reasonable to fix the Attendance score
(column 4), since the absence of more than 1/3 classes causes a failure
of the course in most universities. A lot of adjustments must be made to
match up the total scores for each students. This is quite a lot of works
and time-consuming. Let us look at the row 1. For this student, the
professor need to change total score 75.65 to some integer T in [90, 94)
and adjust six field scores to sum up to T . A possible example of such
adjustments would look like Figure 2.

First, we interpolate total scores in a piece-wise linear manner as in
the next picture. More precisely, let C = [100, c1, · · · , c8, 0] be the cut
of the original total scores where 100 and 0 are added to the original
cut C. Each point x in each subinterval [Ci+1, Ci] will be mapped onto
a point in the corresponding subinterval [Di+1, Di] of the normal cut D =

Score normalization for a university grades input system 945

Figure 2. An example of adjusted scores

[100, 95, 90, · · · , 65, 60, 0], so that x is mapped onto the integer part of

Di+1 +
Di − Di+1

Ci − Ci+1

(x− Ci+1).

Column 6 in Figure 2 shows the results of the normalization of total
scores Ti for i = 0, · · · , 4. Now we need to adjust the values of six fields
in each row so that the sum of them is equal to the normalized total
score.

It is clear that there are many ways or algorithms to do these ad-
justments. We will adjust each field basically by a linear function. To
preserve the order of scores, we require the slope to be positive. The
actual adjustment will be done using a neural network. To summarize
the conditions we require

1. the Attendance score is fixed.
2. the transformation F of each field is order-preserving:

x1 < x2 =⇒ F (x1) ≤ F (x2).

2. Our neural network

Our problem is a kind of regression (fitting) problem. We are going
to use a shallow neural network to solve it. Our network is a very simple
network as shown in the diagram below, but it contains new fundamental
ideas which have never used before. It consists of input layer, a hidden
layer and the output layer. We will basically follow the idea of gradient
descent algorithm but the direction we use in the iterations is not the
exact direction of gradients. Our data consists of six scores as in Figure
1 for each of 32 students. For the generality of neural networks, there

946 Young Ho Park

x1

x2

x3

x4

x5

Input
layer
X

a11

a12

a13

a14

a15

Hidden
layer

Z1 7→ A1

a2

Output
layer

Z2 7→ A2

Figure 3. our network

are so many references. See [2] for example or Andrew Ng’s Machine
Learning Youtube videos [4].

The input data X consists of 5-dimensional vectors of scores from all
fields but Attendance. It is an array of size 5×N , where N is the number
of samples. Using the numpy operation symbols and the vectorization,
the forward propagation is given as follows :

Z1 = W1@X + b1, A1 = M ∗ σ(Z1/M)

Z2 = W2@A1, A2 = Z2

Here W1 is a 5× 5 matrix, b1 is a 5× 1 array, M = (15 15 30 20 5)T is
the 5× 1 array of maximums of five fields, σ(z) is the sigmoid function
defined by σ(z) = 1/(1 + e−z) and W2 = (1 1 1 1 1), all-one vector.

For a single input vector X = (x1 x2 x3 x4 x5)
T , the output from the

hidden layer is A1 = (a11 a12 a13 a14 a15)
T , where a1i satisfy

0 ≤ a1i ≤Mi

for all 1 ≤ i ≤ 5. Here Mi is the upper bound of values from field i. It
is a new idea to use the sigmoid function in this way to guarantee this
bound condition. The array A1 represents the adjusted scores in five
fields of a student. Note also that we scaled the domain of the sigmoid
to distribute its values more evenly on the domain [−Mi,Mi]. Compare
it with Mi ∗ σ(z) without the scaling as shown in the Figure 4.

Score normalization for a university grades input system 947

Figure 4. M · σ(z) versus M · σ(z/M) with M = 30

The network’s output is A2 = a11 + a12 + a13 + a14 + a15, which
represents the adjusted total score at the iteration stage.

Remember that the target array Y of the network is the difference
between the adjusted total score (column 6 in Figure 2) and the Atten-
dance score (column 4 in Figure 2).

The cost function of the network is given by

J =
1

2N

∑
(A2 − Y)2

Let dQ denote the Jacobian ∂J
∂Q

for any Q. Then the derivatives in the

back propagation are given in the vectorized form as follows (see [6]):

dZ2 = (A2 − Y)/N

dA1 = W T
2 @dZ2

dZ1 = σ′(Z1/M) ∗ dA1

dW1 = dZ1@X
T

db1 = numpy.sum(dZ1, axis=1, keepdims=True)

Usually, the updating parameters W1, b1 is done by

W1 ← W1 − α · dW1

b1 ← b1 − α · db1

948 Young Ho Park

where α is the learning rate. However, we modify this update rule in a
new way as

W1 ← W1 − α · dW1 ∗ I5(1)

b1 ← b1 − α · db1(2)

Here ∗ denotes the pointwise multiplication as usual in numpy. Note that
our network design is different from the conventional network. Since the
weight matrices must stay in the diagonal form, we can not apply the
usual gradient descent algorithm, which results in non-diagonal weight
matrices. This is why we only take into account of diagonal components
of derivative dW1 in Equation (1). So the direction of the convergence
is little bit off the direction of gradients. It turns out that this kind
of modified iteration still works. We start with W1 = I5. Then this
iteration will always yield diagonal

W1 = diag(w1, · · · , w5).

It seems that wi > 0 for all i in practice with initial W1 = I5. We make
sure that this condition holds for the final W1. For the final output, it
took less than 7 seconds to get the cost less than 1 after 80000 iterations.
See Figure 5 for the cost function. Because we need more adjustments
for the network’s output as explained below, costs less than 4 would
work as well.

Figure 5. Plot of cost function in iteration

Score normalization for a university grades input system 949

Figure 6. Network’s output before final touch

The final parameters we obtained are

W1 = diag(20.38345244, 4.94426245, 4.28029794, 6.20767928, 7.11592338)

(3)

b1 = (−30.85224534,−23.61155618,−33.72601566,−37.9907464,
(4)

− 20.03404771)T

Since a1i = wixi + b1i with positive wi, the order-preserving condition
will be satisfied.

Recall that a1i are supposed adjustments of field values, and hence
we have to take the integral parts of them at the final. It contribute to
more error in the summations

∑
i a1i with target values. The modified

parameters updates (following diagonal directions only) might get in
the way to the targets, too. In short, we need more adjustment for the
network’s output to match up the targets as the Figure 6 shows.

At rows 1,2,3, the rounded network’s output sums (column 6) do not
match up with the actual totals (written in column 8). To make it
correct, we add to or subtract from each of five fields (columns 0 to 4) in
turn, if in bounds 0 ≤ a1i ≤Mi, until the five fields sum up to the total.
This completes the modification we want as given in Figure 2. Note that
this final touch might cause to break the order-preserving property.

The actual Python code in Jupyter notebook with the example data
can be downloaded from [5]. The coding is done in Python from the
scratch only using numpy and pandas. For an introductory book of
Python, we recommend [3]. For a quick browse, we include the coding
for our neural network in compact form with no comments.

950 Young Ho Park

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from scipy.special import expit as sigmoid

def d_sigmoid(x):

return sigmoid(x)*(1-sigmoid(x))

Preparation of Dataframe

filename = ’alg_data.xlsx’

mycut = [83,75,65,58,55,47,40,33]

df = pd.read_excel(filename, header=1,encoding = ’cp949’)

N = df.shape[0]

N_cols = df.shape[1]

orig_col_names = [col for col in df.columns]

new_col_names = list(range(len(orig_col_names)))

df.columns = new_col_names

Mi = np.array([15,15,30,20,5]).reshape(-1,1)

df[6] = sum(df[i] for i in range(6))

cut = [max(df[6])+1] + mycut + [0]

NORM_CUT = [100,95,90,85,80,75,70,65,60,0]

GRADES = [’A+’,’A0’,’B+’,’B0’,’C+’,’C0’,’D+’,’D0’,’F’]

def grade(x, cut):

for i in range(9):

if x >= cut[i+1]:

return GRADES[i]

for i in range(N):

df.at[i,7] = grade(df.at[i,6], cut)

def normalize_total(x):

for i in range(9):

if cut[i+1]<= x <cut[i]:

slope = (NORM_CUT[i]-NORM_CUT[i+1])

/(cut[i]-cut[i+1])

res = NORM_CUT[i+1] + slope*(x-cut[i+1])

return int(res)

for i in range(N):

df.at[i,8] = normalize_total(df.at[i,6])

df[8] = df[8].astype(int)

Xw = np.array(df[list(range(6))]).T

Yw = np.array(df[8]).reshape(1,-1).astype(float)

Score normalization for a university grades input system 951

X = Xw[[0,1,2,3,5]]

Y = Yw - Xw[4]

dg = df.copy()

Neural Network

W2 = np.ones((1,5))

def initialize():

W1 = np.eye(5)

b1 = np.zeros((5,1))

params = {"W1":W1, "b1":b1}

return params

def forward_propagation(X, params):

W1 = params["W1"]

b1 = params["b1"]

Z1 = W1 @ X + b1

A1 = Mi * sigmoid(Z1/Mi)

Z2 = W2 @ A1

A2 = Z2

return A2, A1, Z1

def mse_loss(AL, Y):

loss = np.mean((AL-Y)**2 / 2)

loss = np.squeeze(loss)

return loss

def backward_propagation(X, Y, params):

A2, A1, Z1 = forward_propagation(X,params)

W1 = params["W1"]

b1 = params["b1"]

N = X.shape[1] # number of data samples in X

dZ2 = (A2 - Y)/N

dA1 = W2.T @ dZ2

dZ1 = d_sigmoid(Z1/Mi) * dA1

dW1 = (dZ1 @ X.T)

db1 = np.sum(dZ1, axis=1, keepdims=True)

grads={"dW1":dW1,"db1":db1}

return grads

def update_params(params, grads, lr):

params["W1"] = params["W1"] - lr * grads["dW1"] * np.eye(5)

params["b1"] = params["b1"] - lr * grads["db1"]

return params

def neural_net(X, Y, params, nitr, lr):

952 Young Ho Park

cost_history = []

for i in range(nitr):

A2, _, _ = forward_propagation(X, params)

cost = mse_loss(A2, Y)

cost_history.append(cost)

grads = backward_propagation(X, Y, params)

params = update_params(params, grads, lr)

if i % (nitr // 10) == 0:

print(f’After {i} iterations,

Cost: {np.round_(cost_history[-1],5)}’)

#rint(params[’W1’])

if cost < 1:

break

return params, cost_history

Iteration

params = initialize()

params, cost_history = neural_net(X,Y,params,100001,0.01)

plt.plot(cost_history)

print(’final cost :’, cost_history[-1])

print(params[’W1’])

print(params[’b1’])

A2, A1, Z1 = forward_propagation(X, params)

for j in range(5):

dg[j] = (np.round_(A1.T)[:,j]).astype(int)

df[9] = np.round_(A2.reshape(-1,1)).astype(int)

dg[5] = df[4]

dg[6] = sum(dg[j] for j in range(6))

dg[5] = df[4]

dg[6] = sum(dg[j] for j in range(6))

Final touch

for i in range(N):

diff = dg[8][i] - dg[6][i]

j = 0

while diff != 0 :

if 0 <= dg.at[i,j] + np.sign(diff) <= np.squeeze(Mi[j]):

dg.at[i,j] += np.sign(diff)

diff = diff - np.sign(diff)

j = (j + 1) % 5

dg[6] = sum(dg[j] for j in range(6))

Score normalization for a university grades input system 953

References

[1] M. Hagan, H. Demuth, M. Beale and O. Jesús, Neural network design, 2nd
edition, ebook, https://hagan.okstate.edu/NNDesign.pdf

[2] S. Marsland, Machine learning, an algorithmic perspective, second edition, CRC
press, 2015

[3] E. Matthes, Python crash course, no starch press, 2016
[4] A. Ng, Machine learning lectures, Youtube channel Artificial Intelligence - All

in One, 2016
[5] Y.H. Park, Jupyter notebook with a sample data for this article,

https://deepmath.kangwon.ac.kr/∼yhpark/pub/grading.zip, 2020
[6] Y.H. Park, Derivatives in neural networks, unpublished note,

https://deepmath.kangwon.ac.kr/∼yhpark/pub/derivativesinNN.pdf, 2019

Young Ho Park
Department of Mathematics, Kangwon National University
Chuncheon 24341, Korea
E-mail : yhpark@kangwon.ac.kr

