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GABOR FRAMES IN l2(Z) FROM GABOR FRAMES

IN L2(R)

Jineesh Thomas, Madhavan Namboothiri N M, and
Eldo Varghese

Abstract. In this paper we discuss about the image of Gabor
frame under a unitary operator and derive a sufficient condition
under which a unitary operator from L2(R) to l2(Z) maps Gabor
frame in L2(R) to a Gabor frame in l2(Z).

1. Introduction

To date, Hilbert space frame theory has gained applications in vast
areas of pure mathematics, applied mathematics and engineering. In
1946, it was first initiated by D.Gabor [11] in his Theory of Communica-
tion, and formulated a fundamental approach to signal decomposition in
terms of elementary signals. His approach has become the archetype for
the spectral analysis associated with time-frequency methods and further
uses are being found for the theory in areas such as, optics, filterbanks,
signal detection and many more. The vital works of Janssen [14], along
with the theoretical foundation of communication theory and signal pro-
cessing, using time frequency analysis by Gabor made frame theory an
independent topic of mathematical investigation in 1980’s. Frames and
their relatives are most often considered in the discrete case, for instance
in signal processing [7]. Traditionally, frames were studied for the whole
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space or for the closed subspace. The importance of the beautiful theory
of frames in modern signal processing and time frequency analysis is now
ingrained (see [13], for example).

The concept of frames in Hilbert spaces were introduced in 1952 by
Duffin and Schaeffer [7] for studying some profound problems in non
harmonic Fourier series. With the intensity of research on frame the-
ory, various generalizations of frames have been proposed; frame of sub-
spaces [1], [2], pseudo-frames [16], oblique frames [5] and so on, in which
Gabor frames or Weyl-Heisenberg frames bagged a prime position. These
frames are generated by translations and modulations of a single element
in the space. Gabor analysis took a new spin with the fundamental works
of Daubechies, Gross- mann and Meyer in 1986 [6] and put forth the idea
of combining Gabor analysis with frame theory. Systematic utilisation
of time shifts (translations) and frequency shifts (modulations) lie at the
heart of modern time-frequency analysis. Gabor analysis aims at rep-
resentating functions(signals) f ∈ L2(R) as superpositions of translated
and modulated versions of a fixed function g ∈ L2(R). Gabor systems
in L2(R) have the form {e2πimbxg(x − na)}m,n∈Z for some g ∈ L2(R)
and a, b > 0. Using operator notation, we can write a Gabor sys-
tem as {EmbTnag}m,n∈Z. We will not go into a detailed explanations
of Gabor analysis and its role in time-frequency analysis, but just refer
to [13], [4], [8], [9], [10].

One can consider frames in the sequence space l2(Z) with a Gabor
like structure without referring to frames in L2(R). The theory for these
frames is very similar to the Gabor theory in L2(R). Janssen showed
in [15] that there is a natural way to obtain discrete Gabor frames using
Gabor frames for L2(R) through sampling. We are interested to get
Gabor frame in l2(Z) as image of Gabor frame in L2(R) via a suitable
unitary operator. In this paper, section 2 is just recalling of basics in
general frame theory and basics of Gabor frames in the spaces L2(R) and
l2(Z). In Section 3, we explain a method to construct Gabor frames in
l2(Z) from Gabor frames in L2(R) via a unitary transformation. Theory
about frames in finite dimensional spaces are available in [3], [12].

In this paper, H will denote a separable Hilbert space with inner
product 〈·, ·〉. Our main references for frame theory and the proofs of
the statements in this article are [13], [4].
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2. Preliminaries

A sequence {fk}∞k=1 of elements in a Hilbert space H is a frame for
H if there exist constants α, β > 0 such that

α‖f‖2 ≤
∞∑
k=1

|〈f, fk〉|2 ≤ β‖f‖2, ∀ f ∈ H.

If a sequence {fk}∞k=1 satisfies atleast the upper frame condition, then it
is called a Bessel sequence. We say that {fk}∞k=1 is a frame sequence, if it
is a frame for span{fk}∞k=1. The numbers α, β are called frame bounds.
If α = β, then the corresponding frame is called a tight frame and in
particular a tight frame with α = β = 1 is called a Parseval frame or
normalized tight frame.

Since a frame {fk}∞k=1 is a Bessel sequence, the operator T : l2(N)→

H defined by T{ck}∞k=1 =
∞∑
k=1

ckfk is bounded and T is called the syn-

thesis operator or pre-frame operator. The adjoint operator of T is the
operator T ∗ : H → l2(N) given by, T ∗f = {〈f, fk〉}∞k=1 and is called
the analysis operator. By composing T and T ∗ we obtain the frame op-
erator

S : H → H, Sf = TT ∗f =
∞∑
k=1

〈f, fk〉fk

Note that since {fk}∞k=1 is a Bessel sequence, the series defining S con-
verges unconditionally for all f ∈ H. It can be seen that, frame operator
of a tight frame is a scalar multiple of the identity operator and that of
a normalized tight frame is the identity operator.
Following are some important properties of frame operator S associated
with a frame in a Hilbert space.

Let {fk}∞k=1 be a frame in a Hilbert space H with frame operator S
and frame bounds α, β. Then the following hold.
(1) S is bounded, invertible, self-adjoint and positive. In fact αI ≤ S ≤
βI.
(2) {S−1fk}∞k=1 is a frame with frame bounds β−1, α−1; if α and β are
the optimal frame bounds for {fk}∞k=1, then the bounds β−1, α−1 are the
optimal frame bounds for {S−1fk}∞k=1.
(3) The frame operator for {S−1fk}∞k=1 is S−1.
(4) {S−1/2fk} is a normalized tight frame.
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The frame {S−1fk}∞k=1 is called the canonical dual frame of {fk}∞k=1 be-
cause it plays the same role in the frame theory as the dual of a basis in
functional analysis.

Next we state a prime result in frame theory namely the frame de-
composition. It says that if {fk}∞k=1 is a frame for H, then every element
in H has a representation as a superposition of the frame elements. Fur-
thermore, it says that all information about each f ∈ H is contained
in the sequence {〈f, S−1fk〉}∞k=1. The numbers 〈f, S−1fk〉 are called the
frame coefficients of f .

Theorem 2.1. Let {fk}∞k=1 be a frame in a Hilbert space H with a

frame operator S. Then for all f ∈ H, f =
∞∑
k=1

〈f, S−1fk〉fk and

f =
∞∑
k=1

〈f, fk〉S−1fk. Both series converge unconditionally for all f ∈ H.

Among several classes of frames in frame theory, Gabor frames or
Weyl-Heisenberg frames in L2(R) have received remarkable role as they
are generated by a single element in the space. We now come out with
some basics of Gabor frame analysis in L2(R). The theory for Gabor
analysis in L2(R) is based on two classes of operators on L2(R), namely
the translation and modulation operators. For a, b ∈ R, the translation
operator Ta on L2(R) is defined by (Taf)(x) = f(x− a), x ∈ R, and the
modulation operator Eb on L2(R) by (Ebf)(x) = e2πibxf(x), x ∈ R.

Definition 2.2. A frame in L2(R) of the form {EmbTnag}m,n∈Z for
some g ∈ L2(R) and a, b > 0 is called a Gabor frame or Weyl-Heisenberg
frame.

Gabor analysis aims at representing functions f ∈ L2(R) as superpo-
sitions of translated and modulated versions of a fixed g ∈ L2(R).
It is well known that if {EmbTnag}m,n∈Z is a Gabor frame, then there
exists a function h ∈ L2(R) such that

f =
∑
m,n∈Z

〈f, EmbTnah〉EmbTnag ∀f ∈ L2(R).

The classical choice of h is h = S−1g, where S is the frame operator.
The function h = S−1g is called the canonical dual generator.

Proposition 2.3. For each pair of translation and modulation pa-
rameters a, b satisfying the condition 0 ≤ ab ≤ 1, there exists a g ∈ L2(R)
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such that (g, a, b) is a normalized tight Gabor frame which, therefore has
the identity operator as its frame operator.

We now record some basics of Gabor frame analysis in the sequence
space l2(Z). Most of the numerical calculation with elements in L2(R)
will involve a discrete structure, where all calculations are done with
sequences in l2(Z). Hence it is important to know that certain conditions
on a Gabor frame {EmbTnag : m,n ∈ Z} in L2(R) in fact imply that we
can construct a frame for l2(Z) having a similar structure.

For each b ∈ R, the modulation operator Êb : l2(Z) −→ l2(Z) is

defined by, Êbg(j) = e2πibjg(j), for all g = (...., g(−1), g(0), g(1), .....) ∈
l2(Z), where the jth coordinate of g is denoted by g(j). Similarly for

each n ∈ Z the translation operator T̂n : l2(Z) −→ l2(Z) is defined by

T̂ng(j) = g(j − n), for all g = (...., g(−1), g(0), g(1), .....) ∈ l2(Z).

Even though the definition of Êb makes sense for all b ∈ R we will only
use modulations of the form Êm/M , where M ∈ N is fixed and m ∈ Z.
In the language used for Gabor systems in L2(R) this corresponds to
having the modulation parameter equal to 1/M . There is, however, one
major difference between the two settings. In L2(R)-setting modulation
operator with different parameters are necessarily different, but this is
not the case in discrete setting. In fact with the above definition,
Êk = Êm

M
+k, for all k ∈ Z. Therefore {Êm/Mg : m ∈ Z} can not be a

Bessel sequence in l2(Z) unless g = 0. For this reason we will consider

modulations Êm/M with m = 0, 1, 2, ....M − 1.
The discrete Gabor system generated by a sequence g ∈ l2(Z) with

the modulation parameter 1
M

and translation parameter N, (M,N ∈ N)

is now defined as the family of sequences {Êm/M T̂nNg : m = 0, 1, ....M −
1, n ∈ Z}. Specifically , Êm/M T̂nNg is the sequence in l2(Z) whose j- th

coordinate is Êm/M T̂nNg(j) = e2πi(j−nN)m
M g(j − nN).

For more detailed results about frame theory in the spaces L2(R) and
l2(Z) one may refer [4].

3. Construction of Gabor frames in l2(Z)
from Gabor frames in L2(R)

From Proposition 2.3, there exists an element g ∈ L2(R) such that the
collection {Em

M
TnNg : m,n ∈ Z} is a Gabor frame in L2(R) for any two
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positive integers M , N with N
M
≤ 1. In this section, we focused on the

construction of a Gabor frame {Êm
M
T̂nNg : m = 0, 1, 2...M − 1, n ∈ Z}

in l2(Z) from a Gabor frame {Em
M
TnNg : m,n ∈ Z} in L2(R) for any two

positive integers M , N with N
M
≤ 1.

The following lemma which is available in [4] is useful in our discus-
sion and it ensures the existence of pseudo inverse for a bounded linear
operator on a Hilbert space with closed range.

Lemma 3.1. Let U be a bounded linear operator from a Hilbert space
H to a Hilbert space K with its range set RU is closed. Then there exists
a bounded operator U † from K to H such that UU †f = f for all f ∈ RU .
Moreover UU † is the orthogonal projection of H onto RU .

Theorem 3.2. Let {fk}∞k=1 be a frame in K with bounds A and B
and let U : K −→ H a bounded linear operator with non trivial closed
range. Then {Ufk}∞k=1 is a frame sequence with bounds A ‖ U † ‖−2 and
B ‖ U ‖2.

Proof. First observe that,
∑∞

k=1 | 〈f, Ufk〉 |2=
∑∞

k=1 | 〈U∗f, fk〉 |2

≤ B ‖ U∗f ‖2≤ B ‖ U∗ ‖2‖ f ‖2= B ‖ U ‖2‖ f ‖2 .
Thus {Ufk}∞k=1 is a Bessel sequence in H with upper frame bound B ‖
U ‖2. For h ∈ Span{Ufk}∞k=1, there is f ∈ Span{fk}∞k=1 with h = Uf .
Since UU † is the orthogonal projection onto RU , it is self adjoint and
hence,

h = Uf = (UU †)(Uf) = (U †)∗U∗(Uf).

Thus, ‖ h ‖2≤‖ (U †)∗ ‖2‖ U∗Uf ‖2 ≤ ‖U†‖2
A

∑∞
k=1 | 〈U∗Uf, fk〉 |2

= ‖U†‖2
A

∑∞
k=1 | 〈h, Ufk〉 |2.

Since U : K −→ H is of non trivial closed range, the remaining assertions
follow.

Remark 3.3. Let {fk}∞k=1 be a frame in K with bounds A and B and
U : K −→ H a bounded linear surjective operator . Then {Ufk}∞k=1 is a
frame in H with bounds A ‖ U † ‖−2 and B ‖ U ‖2.

Theorem 3.4. Let M,N be natural numbers with N
M
≤ 1. Suppose

that the collection {Em
M
TnNg : m, n ∈ Z} is a Gabor frame in L2(R)

for some g ∈ L2(R). Then for any surjective bounded linear operator

U : L2(R) → l2(Z) with the property that UEm
M
TnN = Êm

M
T̂nNU for

m, n ∈ Z, the sequence {Êm
M
T̂nNUg : m = 0, 1, 2.....,M − 1, n ∈ Z} is a

Gabor frame in l2(Z).
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Proof. Let g ∈ L2(R) and M,N be two natural numbers such that
N
M
≤ 1 and assume that the collection {Em

M
TnNg : m,n ∈ Z} is a

Gabor frame in L2(R) and U be a surjective bounded linear operator

from L2(R) to l2(Z) with the property that UEm
M
TnN = Êm

M
T̂nNU for

m, n ∈ Z. Then by Remark 3.3 {U(Em
M
TnNg) : m,n ∈ Z} is a frame

in l2(Z). Since U satisfies UEm
M
TnN = Êm

M
T̂nNU for m,n ∈ Z, and

Êm
M

+kT̂nNg = Êm
M
T̂nNg for any k ∈ Z, we see that {UEm

M
TnNg : m, n ∈

Z} = {Êm
M
T̂nNUg : m, n ∈ Z} = {Êm

M
T̂nNUg : m = 0, 1, 2, . . . , M −

1, n ∈ Z} and hence the frame {Êm
M
TnNUg : m = 0, 1, 2, . . . , M −

1, n ∈ Z} is a Gabor frame in l2(Z).

It is important to know that what kind of conditions on a Gabor
frame {Em

M
TnNg : m,n ∈ Z} really imply that we have a frame for l2(Z)

having a Gabor like structure. The relevant conditions were discovered
by Janssen [15]. He proved that there is a natural way to obtain discrete
Gabor frames via Gabor frames for L2(R) through sampling. A detailed
discussion of these theories are available in [4]. We consider a Gabor
system for L2(R) of the form {Em

M
TnNg : m,n ∈ Z}, where g ∈ L2(R)

is the window function or generating function and M, N ∈ N. In
searching a Gabor like system in l2(Z) the natural question arising is,
“which type of linear transformations maps a Gabor frame in L2(R) to
a Gabor like frame in l2(Z)”.

Let h = χ[0,1], the characteristic function on [0, 1]. Then the collection
{EkTjh : k, j ∈ Z} is an orthonormal basis for L2(R) [4].

Let g ∈ L2(R) then, g =
∑
k,j∈Z

αkjEkTjh, where αkj = 〈g, EkTjh〉.

Definition 3.5. Let g ∈ L2(R), then for each m,n ∈ Z and for
each pair of positive integers M and N , there is a sequence of complex

numbers {ζr,s} such that Em
M
TnNg =

∑
r,s∈Z

ζr,sErTsh. This sequence is

called window sequence of g with respect to the quadruple (m,n,M,N)
and each terms of this sequence are called window constants.

Proposition 3.6. Let {ζr,s} be the window sequence of g ∈ L2(R)
with respect to the quadruple (m,n,M,N) where m,n ∈ Z and M,N
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are positive integers . Then for m
M
/∈ Z

ζr,s =
∑
p∈Z

αr−p, s−nN
M

2πi(m− pM)
e2πi

m
M
s(e2πi

m
M − 1)

and for m
M
∈ Z

ζr,s = αr−m
M
, s−nN

where αkj = 〈g, EkTjχ[0,1]〉.

Proof. For each m,n ∈ Z, the elements Em
M
TnNg in the Gabor frame

{Em
M
TnNg : m, n ∈ Z} for L2(R) takes the form

Em
M
TnNg =

∑
k,j∈Z

αkjEm
M
TnNEkTjh

=
∑
k,j∈Z

αkjEm
M
TnNe

2πikjTjEkh

=
∑
k,j∈Z

αkjEm
M
TnN+jEkh

=
∑
k,j∈Z

αkje
2πim

M
(nN+j)TnN+jEm

M
Ekh

=
∑
k,j∈Z

αkje
2πim

M
(nN+j)TnN+jEk(Em

M
h)

Note that, Em
M
h =

∑
p,q∈Z

βpqEpTqh, where

βpq = 〈Em
M
h,EpTqh〉

=

∫ ∞
−∞

Em
M
h(x)EpTqh(x)dx

=

∫ ∞
−∞

e2πi
m
M
xh(x)e−2πip(x−q)h(x− q)dx

=

∫ ∞
−∞

e2πi
m
M
xe−2πip(x−q)χ[0,1]∩([0,1]+q)(x)dx

when q = 0, we have βp0 =
∫ 1

0
e−2πi(p−

m
M

)xdx and hence

βp0 =

{
M

2πi(m−pM)
[e−2πi(p−

m
M

) − 1] if p 6= m
M

1 if p = m
M
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Also for q 6= 0, βpq = 0

Hence,

βpq =


0 if q 6= 0

M
2πi(m−pM)

[e−2πi(p−
m
M

) − 1] if q = 0 and p 6= m
M

1 if q = 0 and p = m
M

Therefore for m
M
/∈ Z, Em

M
h =

∑
p∈Z

M

2πi(m− pM)
(e2πi

m
M − 1)Eph

Thus for any m ∈ Z with m
M
/∈ Z, we have Em

M
TnNg

=
∑
k,j∈Z

αkje
2πim

M
(nN+j)TnN+jEk

∑
p∈Z

M

2πi(m− pM)
(e2πi

m
M − 1)Eph

=
∑
k,j∈Z

αkje
2πim

M
(nN+j)(e2πi

m
M − 1)TnN+jEk

∑
p∈Z

M

2πi(m− pM)
Eph

=
∑
p∈Z

∑
k,j∈Z

αkje
2πim

M
(nN+j)(e2πi

m
M − 1)EkTnN+j

M

2πi(m− pM)
Eph

=
∑
p∈Z

∑
k,j∈Z

αkj
M

2πi(m− pM)
e2πi

m
M

(nN+j)(e2πi
m
M − 1)Ek+pTnN+jh

Take r = k + p and s = nN + j. Then

Em
M
TnNg =

∑
r,s,p∈Z

αr−p, s−nN
M

2πi(m− pM)
e2πi

m
M
s(e2πi

m
M − 1)ErTsh

=
∑
r,s∈Z

ζr,sErTsh

where, ζr,s =
∑
p∈Z

αr−p, s−nN
M

2πi(m− pM)
e2πi

m
M
s(e2πi

m
M − 1)

Now for any m ∈ Z with m
M
∈ Z , we have Em

M
TnNg

=
∑
k,j∈Z

αkje
2πim

M
(nN+j)TnN+jEkEm

M
h

=
∑
k,j∈Z

αkjTnN+jEk+m
M
h

Take r = k + p and s = nN + j. Then,

Em
M
TnNg =

∑
r,s∈Z

ζr,sErTsh

where, ζr,s = αr−m
M
, s−nN .
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The following theorem gives a sufficient condition for a unitary operator
U from L2(R) to l2(Z) which maps a Gabor frame (g, 1

M
, N) in L2(R)

to a Gabor frame (Ug, 1
M
, N) in l2(Z).

Theorem 3.7. Let g ∈ L2(R) and N,M are positive integers such
that N

M
≤ 1, {Em

M
TnNg : m,n ∈ Z} is a Gabor frame in L2(R). Assume

φ is a bijection from Z× Z→ Z such that, for each r, s,m, n ∈ Z if the
window sequence of g with respect to the quadruple (m,n,M,N) given
by {ζr,s} satisfies ζr,s = αφ−1(φ(r,s)+nN)e

2πim
M
φ(r,s), where αkj = 〈g, EkTjh〉,

h = χ[0,1], then there is a unitary operator U : L2(R) → l2(Z) so that

{Êm
M
T̂nNUg : m = 0, 1, 2...M − 1, n ∈ Z} is a Gabor frame in l2(Z).

Proof. Define U : L2(R)→ l2(Z) by

U [Em
M
TnNEkTjh] = Êm

M
T̂nNeφ(k,j)

where {ej} is the standard orthonormal basis for l2(Z).
Note that U(EkTjh) = eφ(k,j). Hence U is a unitary linear map since
U maps the an orthonormal basis of L2(R) to an orthonormal basis for
l2(Z).
Also we have g =

∑
k,j∈Z αkjEkTjh, where αkj = 〈g, EkTjh〉.

Therefore, U(g) =
∑
k,j∈Z

αkjeφ(k,j) since U(EkTjh) = eφ(k,j).

Hence, Êm
M
T̂nNU(g) =

∑
k,j∈Z

αkjÊm
M
T̂nNeφ(k,j)

=
∑
k,j∈Z

αkje
2πim

M
(φ(k,j)−nN)eφ(k,j)−nN

=
∑
r,s∈Z

αφ−1(φ(r,s)+nN)e
2πim

M
φ(r,s)eφ(r,s)..........(1)

Now by definition of the window sequence {ζr,s},
Em

M
TnNg =

∑
r,s∈Z

ζr,sErTsh. Therefore,

U(Em
M
TnNg) =

∑
r,s∈Z

ζr,seφ(r,s)........(2)

Since ζr,s = αφ−1(φ(r,s)+nN)e
2πim

M
φ(r,s), Eq(1)and (2) follows that

UEm
M
TnNg = Êm

M
T̂nNUg
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Hence by Theorem 3.4 {Êm
M
T̂nNUg : m = 0, 1, 2...M − 1, n ∈ Z} is a

Gabor frame in l2(Z).
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