A NOTE ON ALMOST RICCI SOLITON AND GRADIENT ALMOST RICCI SOLITON ON PARA-SASAKIAN MANIFOLDS

Krishnendu De and Uday Chand De

Abstract

The object of the offering exposition is to study almost Ricci soliton and gradient almost Ricci soliton in 3-dimensional paraSasakian manifolds. At first, it is shown that if (g, V, λ) be an almost Ricci soliton on a 3 -dimensional para-Sasakian manifold M, then it reduces to a Ricci soliton and the soliton is expanding for $\lambda=-$ 2. Besides these, in this section, we prove that if V is pointwise collinear with ξ, then V is a constant multiple of ξ and the manifold is of constant sectional curvature -1 . Moreover, it is proved that if a 3-dimensional para-Sasakian manifold admits gradient almost Ricci soliton under certain conditions then either the manifold is of constant sectional curvature -1 or it reduces to a gradient Ricci soliton. Finally, we consider an example to justify some results of our paper.

1. Introduction

A Riemannian or pseudo-Riemannian manifold (M, g) obeys a Ricci soliton equation, (see Hamilton [10]) if there exists a complete vector field V, called potential vector field satisfying

$$
\begin{equation*}
\frac{1}{2} £_{V} g+S=\lambda g \tag{1.1}
\end{equation*}
$$

Received May 6, 2020. Revised November 28, 2020. Accepted November 30, 2020. 2010 Mathematics Subject Classification: 53C21, 53C25, 53C50.
Key words and phrases: 3-dimensional para-Sasakian manifold, Almost Ricci soliton, Gradient almost Ricci soliton.
(C) The Kangwon-Kyungki Mathematical Society, 2020.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
where $£_{V}$ is the Lie derivative operator, λ is a real scalar and S is the Ricci tensor. It will be named shrinking, steady or expanding according as $\lambda>0, \lambda=0$ or $\lambda<0$, respectively. Otherwise, it will be called indefinite. The Ricci soliton has been studied by several authors such as ([3], [6], [7], [10], [13], [18], [20]) and many others. As a generalization of Ricci soliton, the notion of almost Ricci soliton was introduced by Pigola et. al. [15], where basically they modified the definition of Ricci soliton by affixing the condition on the parameter λ to be a variable function in (1.1). In the present paper, we study the para-Sasakian manifold admitting an almost Ricci soliton which plays an important role in coeval mathematics.
When the vector field V is the gradient of a smooth function $f: M^{n} \rightarrow$ \mathbb{R}, then the manifold will be called gradient almost Ricci soliton. In this case the antecedent equation takes the form

$$
\begin{equation*}
\nabla^{2} f+S=\lambda g \tag{1.2}
\end{equation*}
$$

where $\nabla^{2} f$ stands for the Hessian of f.
Over and above, the almost Ricci soliton will be called trivial if the vector field X is trivial, or the potential f is constant, otherwise, it will be a non-trivial almost Ricci soliton. In this context, we mention that when $n \geq 3$ and X is Killing vector field an almost Ricci soliton will be a Ricci soliton, since in this case, we have an Einstein manifold, from which we can take up Schur's lemma to presume that λ is constant. Since the soliton function, λ is not necessarily constant, surely comparison with soliton theory will be modified. In particular, the rigidity result contained in Theorem 1.3 of [15] indicates that almost Ricci soliton should reveal a fair board generalization of the productive concept of classical soliton. In truth, we refer the reader to [15] to see some of these changes. In the way to fathom the geometry of almost Ricci soliton, Barros and Ribeiro Jr. proved in [2] that a compact gradient almost Ricci soliton with non-trivial conformal vector field is isometric to a Euclidean sphere. In the same paper, they proved an integral formula for the compact case, which was applied to prove various rigidity results, for more trifles see [2].
The existence of Ricci almost soliton has been verified by Pigola et. al. [15] on some certain class of warped product manifolds. Some characterization of Ricci almost soliton on a compact Riemannian manifold can be found $\mathrm{in}([1],[2])$. It is fascinating to note that if the potential vector field V of the Ricci almost soliton (M, g, V, λ) is Killing then the
soliton becomes trivial, provided the dimension of $M>2$. Moreover, if V is conformal then M^{n} is isometric to Euclidean sphere S^{n}. Thus the Ricci almost soliton can be considered as a generalization of Einstein metric as well as Ricci soliton. The almost Ricci solitons have been studied by several authors such as ([8], [9], [15], [17])and many others. Motivated from the above studies, we make the contribution to investigate an almost Ricci soliton and gradient almost Ricci soliton in a 3-dimensional para-Sasakian manifold.
The present paper is constructed as follows: In section 2, we recall some basic facts and formulas of para-Sasakian manifolds which we will need throughout the paper. In section 3, we prove that if (g, V, λ) be an almost Ricci soliton on a 3 -dimensional para-Sasakian manifold M, then it reduces to a Ricci soliton and the soliton is expanding for $\lambda=-2$. Besides these, in this section, we prove that if V is pointwise collinear with ξ, then V is a constant multiple of ξ and the manifold is of constant sectional curvature -1. Finally, in section 4, it is proved that if a 3-dimensional para-Sasakian manifold admits gradient almost Ricci soliton under certain conditions then either the manifold is of constant sectional curvature -1 or it reduces to a gradient Ricci soliton. Then we consider an example to verify the results of our paper. This paper terminates with a small bibliography which by no means is exhaustive but contains only those references which have been consulted during the preparation of the present paper.

2. Para-Sasakian manifolds

In this section, we gather the formulas and results of the para-Sasakian manifold which will be required in later sections. To know more fact about paracontact metric geometry, we may refer to ([4], [14]) and references therein. Several years ago, the notion of Paracontact metric structures was introduced in [14]. Since the publication of [14], paracontact metric manifolds have been studied by many authors in recent years. The importance of para-Sasakian geometry has been pointed out especially in the last years by several papers highlighting the exchanges with the theory of para-Kähler manifolds and its role in semi-Riemannian geometry and mathematical physics ($[5,11,12])$.

Let M be an $2 n+1$-dimensional differentiable manifold of class C^{∞} in which there are given a $(1,1)$-type tensor field ϕ, a vector field ξ and a 1 -form η such that

$$
\begin{equation*}
\phi^{2} X=X-\eta(X) \xi, \phi \xi=0, \eta(\xi)=1, \eta(\phi X)=0 . \tag{2.1}
\end{equation*}
$$

Then (ϕ, ξ, η) is called an almost paracontact structure and M an almost paracontact manifold. Moreover, if M admits a semi-Riemannian metric g such that

$$
\begin{equation*}
g(\xi, X)=\eta(X), g(\phi X, \phi Y)=-g(X, Y)+\eta(X) \eta(Y), \tag{2.2}
\end{equation*}
$$

then (ϕ, ξ, η, g) is called an almost paracontact metric structure and M an almost paracontact metric manifold [16].
We can now define the fundamental 2-form of the almost paracontact metric manifold by $\Phi(X, Y)=g(X, \phi Y)$. If $d \eta(X, Y)=g(X, \phi Y)$, then (M, ϕ, ξ, η, g) is said to be paracontact metric manifold.
A normal paracontact metric manifold is called a para-Sasakian manifold. In a para-Sasakian manifold the following relations hold :

$$
\begin{equation*}
R(X, Y) \xi=\eta(X) Y-\eta(Y) X \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=-g(X, Y) \xi+\eta(Y) X \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{X} \xi=-\phi X \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
R(X, \xi) Y=g(X, Y) \xi-\eta(Y) X \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
S(X, \xi)=-(n-1) \eta(X), Q \xi=-(n-1) \xi \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
S(\phi X, \phi Y)=-S(X, Y)-(n-1) \eta(X) \eta(Y), \tag{2.8}
\end{equation*}
$$

for any vector fields X, Y, Z where Q is the Ricci operator, i.e., $g(Q X, Y)=$ $S(X, Y)$ of the manifold.
An almost paracontact metric manifold M is said to be η-Einstein if there exist smooth functions a and b, such that

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{2.9}
\end{equation*}
$$

for all $X, Y \in T M$. If $b=0$, then M becomes an Einstein manifold.

3. Almost Ricci soliton

The infamous Riemannain curvature tensor of a three dimensional semi-Riemannian manifold is given by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \\
& -\frac{r}{2}[g(Y, Z) X-g(X, Z) Y], \tag{3.1}
\end{align*}
$$

for any vector fields X, Y, Z where r is the scalar curvature of the manifold. Replacing $Y=Z=\xi$ in the above equation and using (2.3) and (2.7) we obtain(see [12]

$$
\begin{equation*}
Q X=\frac{1}{2}[(r+2) X-(r+6) \eta(X) \xi] . \tag{3.2}
\end{equation*}
$$

In view of (3.2) the Ricci tensor is written as

$$
\begin{equation*}
S(X, Y)=\frac{1}{2}[(r+2) g(X, Y)-(r+6) \eta(X) \eta(Y)] . \tag{3.3}
\end{equation*}
$$

Now before introducing the detailed proof of our main theorem, we first state the following result [12]:

Lemma 3.1. For a 3-dimensional para-Sasakian manifold ($M^{3}, \phi, \xi, \eta, g$), we have

$$
\begin{equation*}
\xi r=0 \tag{3.4}
\end{equation*}
$$

where r denotes the scalar curvature of M.

We consider a 3-dimensional para-Sasakian manifold M admitting an almost Ricci soliton defined by(1.1). Using (3.3) in (1.1) we write

$$
\begin{equation*}
\left(£_{V} g\right)(Y, Z)=(2 \lambda-r-2) g(Y, Z)+(r+6) \eta(Y) \eta(Z) . \tag{3.5}
\end{equation*}
$$

Differentiating the above equation with respect to X and making use (2.7) we obtain

$$
\begin{align*}
\left(\nabla_{X} £_{V} g\right)(Y, Z)= & {[2(X \lambda)-(X r)] g(Y, Z)+(X r) \eta(Y) \eta(Z) } \\
& -(r+6)\{g(X, \phi Y) \eta(Z)+\eta(Y) g(X, \phi Z)\} . \tag{3.6}
\end{align*}
$$

Now we recall the following well-known formula(Yano [19]):
$\left(£_{V} \nabla_{X} g-\nabla_{X} £_{V} g-\nabla_{[V, X]} g\right)(Y, Z)=-g\left(\left(£_{V} \nabla\right)(X, Y), Z\right)-g\left(\left(£_{V} \nabla\right)(X, Z), Y\right)$, for any vector fields X, Y, Z on M. From this we can easily deduce:
$\left.(3.7) \nabla_{X} £_{V} g\right)(Y, Z)=g\left(\left(£_{V} \nabla\right)(X, Y), Z\right)+g\left(\left(£_{V} \nabla\right)(X, Z), Y\right)$.

Since $£_{V} \nabla$ is symmetric tensor of type (1,2), it follows from (3.7) that

$$
\begin{align*}
& g\left(\left(£_{V} \nabla\right)(X, Y), Z\right) \\
& =\frac{1}{2}\left(\nabla_{X} £_{V} g\right)(Y, Z)+\frac{1}{2}\left(\nabla_{Y} £_{V} g\right)(X, Z)-\frac{1}{2}\left(\nabla_{Z} £_{V} g\right)(X, Y) . \tag{3.8}
\end{align*}
$$

Using (3.6) in (3.8) we get

$$
\begin{align*}
2 g\left(\left(£_{V} \nabla\right)(X, Y), Z\right)= & {[2(X \lambda)-(X r)] g(Y, Z)+(X r) \eta(Y) \eta(Z) } \\
& +[2(Y \lambda)-(Y r)] g(X, Z)+(Y r) \eta(X) \eta(Z) \\
& -[2(Z \lambda)-(Z r)] g(X, Y)-(Z r) \eta(X) \eta(Y) \\
& -2(r+6) g(X, \phi Y) \eta(Z) . \tag{3.9}
\end{align*}
$$

After substituting $X=Y=e_{i}$ in the above equation and removing Z from both sides, where $\left\{e_{i}\right\}$ is an orthonormal basis of the tangent space at each point of the manifold and taking $\sum i, 1 \leq i \leq 3$, we have

$$
\begin{equation*}
\left(£_{V} \nabla\right)\left(e_{i}, e_{i}\right)=-D \lambda, \tag{3.10}
\end{equation*}
$$

where $X \alpha=g(D \alpha, X), D$ denotes the gradient operator with respect to g.
Now differentiating(1.1) and using it in (3.7) we can easily determine (3.11)

$$
g\left(\left(£_{V} \nabla\right)(X, Y), Z\right)=\left(\nabla_{Z} S\right)(X, Y)-\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)
$$

Taking $X=Y=e_{i}$ (where $\left\{e_{i}\right\}$ is an orthonormal frame) in (3.11) and summing over i we obtain

$$
\begin{equation*}
\left(£_{V} \nabla\right)\left(e_{i}, e_{i}\right)=0, \tag{3.12}
\end{equation*}
$$

for all vector fields Z. Associating (3.10) and (3.12) yields

$$
\begin{equation*}
D \lambda=0 . \tag{3.13}
\end{equation*}
$$

This implies that λ is constant. This leads to the following theorem:
Theorem 3.1. An almost Ricci soliton on a 3-dimensional paraSasakian manifold reduces to a Ricci soliton.

Following the above theorem and removing Z from both sides of (3.9) yields

$$
\begin{align*}
2\left(£_{V} \nabla\right)(X, Y)= & -(X r) Y+(X r) \eta(Y) \xi-(Y r) X+(Y r) \eta(X) \xi \\
& +g(X, Y) D r-\eta(X) \eta(Y) D r-2(r+6) g(X, \phi Y) \xi \tag{3.14}
\end{align*}
$$

Setting $Y=\xi$ in the above equation and using (3.4) we obtain

$$
\begin{equation*}
2\left(£_{V} \nabla\right)(X, \xi)=0 \tag{3.15}
\end{equation*}
$$

Taking covariant derivative of (3.15) along an arbitrary vector field Y we get

$$
\begin{equation*}
2\left(\nabla_{Y} £_{V} \nabla\right)(X, \xi)+2\left(£_{V} \nabla\right)(X, \phi Y)=0 . \tag{3.16}
\end{equation*}
$$

If, we apply the following formula:

$$
\left(£_{V} R\right)(X, Y) Z=\left(\nabla_{X} £_{V} \nabla\right)(Y, Z)-\left(\nabla_{Y} £_{V} \nabla\right)(X, Z)
$$

in the above equation we have

$$
\begin{equation*}
\left(£_{V} R\right)(X, \xi) \xi=0 \tag{3.17}
\end{equation*}
$$

Taking Lie derivative of (2.3) along V we obtain

$$
\begin{align*}
& \left(£_{V} R\right)(X, \xi) \xi+R\left(X, £_{V} \xi\right) \xi+R(X, \xi) £_{V} \xi \\
& \quad=\left(£_{V} \eta(X)\right) \xi+\eta(X) £_{V} \xi . \tag{3.18}
\end{align*}
$$

Using (2.3), (2.6) and (3.17) in the above equation we infer

$$
\begin{equation*}
g\left(X, £_{V} \xi\right) \xi-2 \eta\left(£_{V} \xi\right) \eta(X) \xi=\left(£_{V} \eta(X)\right) \xi \tag{3.19}
\end{equation*}
$$

Now setting $Z=\xi$ in (3.5) it follows that $\left(£_{V} g\right)(Y, \xi)=(2 \lambda+4) \eta(Y)$. Lie-differentiating the equation (2.2) along V and by virtue of the last equation we have

$$
\begin{equation*}
\left(£_{V} \eta\right)(X)-g\left(£_{V} \xi, X\right)-(2 \lambda+4) \eta(X)=0 . \tag{3.20}
\end{equation*}
$$

Putting $X=\xi$ in the foregoing equation gives

$$
\begin{equation*}
\eta\left(£_{V} \xi\right)=-(2 \lambda+4) \tag{3.21}
\end{equation*}
$$

By the help of (3.20) and (3.21), equation (3.19) provides $\lambda=-2$. Thus we can state the following:

Theorem 3.2. Let $\left(M^{3}, \phi, \xi, \eta, g\right)$ ba a para-Sasakian manifold. If g represents an almost Ricci solitons, then the soliton is expanding for $\lambda=-2$.

Now let the potential vector field V be pointwise collinear with ξ i.e., $V=b \xi$, where b is a function on M. Then from (1.1) we have
(3.22) $g\left(\nabla_{X} b \xi, Y\right)+g\left(\nabla_{Y} b \xi, X\right)+2 S(X, Y)=2 \lambda g(X, Y)$.

Using (2.5) in (3.22), we get

$$
\begin{equation*}
(X b) \eta(Y)+(Y b) \eta(X)+2 S(X, Y)=2 \lambda g(X, Y) \tag{3.23}
\end{equation*}
$$

Putting $Y=\xi$ in (3.23) and using (2.7) yields

$$
\begin{equation*}
(X b)+(\xi b) \eta(X)-4 \eta(X)=2 \lambda \eta(X) . \tag{3.24}
\end{equation*}
$$

Putting $X=\xi$ in (3.24) we obtain

$$
\begin{equation*}
(\xi b)=2+\lambda \tag{3.25}
\end{equation*}
$$

Putting the value of ξb in (3.24) yields

$$
\begin{equation*}
d b=(2+\lambda) \eta . \tag{3.26}
\end{equation*}
$$

Operating (3.26) by d and using Poincare lemma $d^{2} \equiv 0$, we obtain

$$
\begin{equation*}
0=d^{2} b=(2+\lambda) d \eta+d \lambda \eta \tag{3.27}
\end{equation*}
$$

Taking wedge product of (3.27) with η, we have

$$
\begin{equation*}
(2+\lambda) \eta \wedge d \eta=0 \tag{3.28}
\end{equation*}
$$

Since $\eta \wedge d \eta \neq 0$ in a 3-dimensional para-Sasakian manifold, therefore

$$
\begin{equation*}
\lambda=-2 . \tag{3.29}
\end{equation*}
$$

Using (3.29) in (3.26) gives $d b=0$ i.e., $b=$ constant. Therefore from (3.23) we infer

$$
\begin{equation*}
S(X, Y)=-2 g(X, Y) \tag{3.30}
\end{equation*}
$$

that is the manifold is an Einstein manifold and hence from (3.1) it follows that the manifold is of constant sectional curvature -1 .

Thus we can state the following:
Theorem 3.3. Let $\left(M^{3}, \phi, \xi, \eta, g\right)$ ba a para-Sasakian manifold. If g represents an almost Ricci solitons and V is pointwise collinear with ξ, then V is constant multiple of ξ and the manifold is of constant sectional curvature -1 .

4. Gradient Almost Ricci soliton

This section is devoted to studying 3-dimensional para-Sasakian manifolds admitting gradient almost Ricci soliton. For a gradient almost Ricci soliton, we have

$$
\begin{equation*}
\nabla_{Y} D f=-Q Y+\lambda Y \tag{4.1}
\end{equation*}
$$

where D denotes the gradient operator of g.
Differentiating (4.1) covariantly in the direction of X yields

$$
\begin{equation*}
\nabla_{X} \nabla_{Y} D f=-\nabla_{X} Q Y+(X \lambda) Y+\lambda \nabla_{X} Y \tag{4.2}
\end{equation*}
$$

Similarly we get

$$
\begin{equation*}
\nabla_{Y} \nabla_{X} D f=-\nabla_{Y} Q X+(Y \lambda) X+\lambda \nabla_{Y} X \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{[X, Y]} D f=-Q[X, Y]+\lambda[X, Y] . \tag{4.4}
\end{equation*}
$$

In view of (4.2),(4.3) and (4.4) we have

$$
\begin{align*}
R(X, Y) D f & =\nabla_{X} \nabla_{Y} D f-\nabla_{Y} \nabla_{X} D f-\nabla_{[X, Y]} D f \\
& =-\left(\nabla_{X} Q\right) Y+\left(\nabla_{Y} Q\right) X+(X \lambda) Y-(Y \lambda) X . \tag{4.5}
\end{align*}
$$

In view of (3.2) we obtain

$$
\begin{align*}
R(X, Y) D f= & \frac{(Y r)}{2} X-\frac{(X r)}{2} Y-\frac{(Y r)}{2} \eta(X) \xi+\frac{(X r)}{2} \eta(Y) \xi \\
& +\left(\frac{r}{2}+3\right)[\eta(X) \phi Y-\eta(Y) \phi X]+(X \lambda) Y-(Y \lambda) X . \tag{4.6}
\end{align*}
$$

This reduces to

$$
\begin{equation*}
g(R(X, Y) \xi, D f)=(Y \lambda) \eta(X)-(X \lambda) \eta(Y) \tag{4.7}
\end{equation*}
$$

Using (2.3) in the above equation we obtain

$$
\begin{equation*}
\eta(X)(Y f)-\eta(Y)(X f)=(Y \lambda) \eta(X)-(X \lambda) \eta(Y) \tag{4.8}
\end{equation*}
$$

Putting $Y=\xi$ in (4.8) we have

$$
\begin{equation*}
d(\lambda-f)=\xi(\lambda-f) \eta . \tag{4.9}
\end{equation*}
$$

Operating (4.9) by d and using Poincare lemma $d^{2} \equiv 0$, we obtain

$$
\begin{equation*}
d[\xi(\lambda-f)] \eta \wedge d \eta=0 . \tag{4.10}
\end{equation*}
$$

Since in a 3 -dimensional para-Sasakian manifold $\eta \wedge d \eta \neq 0$, we have

$$
\begin{equation*}
\xi(\lambda-f)=\text { constant } . \tag{4.11}
\end{equation*}
$$

Now contracting Y in (4.6) and using $\xi r=0$ we obtain

$$
\begin{equation*}
S(X, D f)=\frac{1}{2}(X r)-2(X \lambda) \tag{4.12}
\end{equation*}
$$

Comparing (3.3) and (4.12) we have

$$
\begin{equation*}
\frac{1}{2}(X r)-2(X \lambda)=\frac{(r+2)}{2}(X f)-\frac{(r+6)}{2} \eta(X)(\xi f) . \tag{4.13}
\end{equation*}
$$

Substituting $X=\xi$ and using $\xi r=0$ in (4.13) we obtain

$$
\begin{equation*}
\xi(\lambda-f)=0 . \tag{4.14}
\end{equation*}
$$

In view of (4.9) and (4.14) we get

$$
\begin{equation*}
(\lambda-f)=\text { constant } . \tag{4.15}
\end{equation*}
$$

Suppose the soliton function λ is invariant under the characteristic vector field ξ and the scalar curvature is constant. Then from (4.13) we have

$$
\begin{equation*}
(r+6)(X \lambda)=0, \tag{4.16}
\end{equation*}
$$

which implies that either $r=-6$ or $\lambda=$ constant.
If $r=-6$, then from (3.3) we get $S=-2 g$, that is the manifold is an Einstein manifold and hence from (3.1) it follows that the manifold is of constant sectional curvature -1 .

If $\lambda=$ constant, then gradient almost Ricci soliton reduces to a gradient Ricci soliton. Hence we can state the following:

Theorem 4.1. If a 3 -dimensional para-Sasakian manifold admits a gradient almost Ricci soliton (f, ξ, λ), then either the manifold is of constant sectional curvature -1 or it reduces to a gradient Ricci soliton, provided the soliton function λ is invariant under the characteristic vector field ξ and the scalar curvature is constant.

5. Example

Here we consider an example of the paper [12]. In this paper the author considers the 3 -dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3}, z \neq 0\right\}$ and the vector fields

$$
\phi e_{2}=e_{1}=2 y \frac{\partial}{\partial x}+z \frac{\partial}{\partial z}, \quad \phi e_{1}=e_{2}=\frac{\partial}{\partial y}, \quad \xi=e_{3}=\frac{\partial}{\partial x}
$$

and shows that the manifold is a para-Sasakian manifold. Also the author has obtained the expressions of the curvature tensor and the Ricci tensor respectively as follows:

$$
\begin{gathered}
R\left(e_{1}, e_{2}\right) \xi=0, \quad R\left(e_{2}, \xi\right) \xi=-e_{2}, \quad R\left(e_{1}, \xi\right) \xi=-e_{1}, \\
R\left(e_{1}, e_{2}\right) e_{2}=-3 e_{1}, \quad R\left(e_{2}, \xi\right) e_{2}=-\xi, \quad R\left(e_{1}, \xi\right) e_{2}=0 \\
R\left(e_{1}, e_{2}\right) e_{1}=-3 e_{2}, \quad R\left(e_{2}, \xi\right) e_{1}=0, \quad R\left(e_{1}, \xi\right) e_{1}=\xi
\end{gathered}
$$

and

$$
\begin{aligned}
S\left(e_{1}, e_{1}\right) & =-g\left(R\left(e_{1}, e_{2}\right) e_{2}, e_{1}\right)+g\left(R\left(e_{1}, e_{3}\right) e_{3}, e_{1}\right) \\
& =2 \\
& =2 g\left(e_{1}, e_{1}\right)
\end{aligned}
$$

Similarly, we have

$$
S\left(e_{2}, e_{2}\right)=2 g\left(e_{2}, e_{2}\right) \quad \text { and } \quad S\left(e_{3}, e_{3}\right)=2 g\left(e_{3}, e_{3}\right) .
$$

Therefore,

$$
r=S\left(e_{1}, e_{1}\right)-S\left(e_{2}, e_{2}\right)+S(\xi, \xi)=2
$$

After writing $V=a e_{1}+b e_{2}+c e_{3} ; a, b, c$ are real number and using the equation

$$
\left(£_{V} g\right)(X, Y)=£_{V} g(X, Y)-g\left(£_{V} X, Y\right)-g\left(X, £_{V} Y\right)
$$

we have

$$
\begin{aligned}
\left(£_{a e_{1}+b e_{2}+c e_{3}} g\right)(X, Y) & =a\left[g\left(\nabla_{X} e_{1}, Y\right)+g\left(X, \nabla_{Y} e_{1}\right)\right] \\
& +b\left[g\left(\nabla_{X} e_{2}, Y\right)+g\left(X, \nabla_{Y} e_{2}\right)\right] \\
& +c\left[g\left(\nabla_{X} e_{3}, Y\right)+g\left(X, \nabla_{Y} e_{3}\right)\right] .
\end{aligned}
$$

Using the Lie derivatives, we obtain

$$
\begin{gathered}
\left(£_{V} g\right)\left(e_{1}, e_{1}\right)=0, \quad\left(£_{V} g\right)\left(e_{2}, e_{2}\right)=0, \quad\left(£_{V} g\right)\left(e_{3}, e_{3}\right)=0, \\
\left(£_{V} g\right)\left(e_{1}, e_{2}\right)=\left(£_{V} g\right)\left(e_{2}, e_{1}\right)=0, \\
\left(£_{V} g\right)\left(e_{1}, e_{3}\right)=\left(£_{V} g\right)\left(e_{3}, e_{1}\right)=-2 b, \\
\left(£_{V} g\right)\left(e_{3}, e_{2}\right)=\left(£_{V} g\right)\left(e_{2}, e_{3}\right)=2 a .
\end{gathered}
$$

Hence, from the above equations for being $£_{V} g=0$, we get $a=b=0$.
Again

$$
\begin{aligned}
& \left.\left(£_{c \xi} g\right)\left(e_{1}, e_{1}\right)\right)+2 S\left(e_{1}, e_{1}\right)+2 \lambda g\left(e_{1}, e_{1}\right)=0, \\
& \left.\left(£_{c \xi} g\right)\left(e_{2}, e_{2}\right)\right)+2 S\left(e_{2}, e_{2}\right)+2 \lambda g\left(e_{2}, e_{2}\right)=0, \\
& \left.\left(£_{c \xi} g\right)\left(e_{3}, e_{3}\right)\right)+2 S\left(e_{3}, e_{3}\right)+2 \lambda g\left(e_{3}, e_{3}\right)=0,
\end{aligned}
$$

for $\lambda=-2$.
Thus we have

$$
\left.\left(£_{c \xi} g\right)\left(e_{i}, e_{j}\right)\right)+2 S\left(e_{i}, e_{j}\right)+2 \lambda g\left(e_{i}, e_{j}\right)=0,
$$

for $i, j=1,2,3$ and $\lambda=-2$. So, the constructed metric reduces to a Ricci soliton. Thus the Theorem 3.1. and Theorem 3.2. are verified.

References

[1] Barros, A., Batista, R. and Ribeiro Jr., E., Compact almost Ricci solitons with constant scalar curvature are gradient, Monatsh. Math., DOI 10.1007/s00605-013-0581-3.
[2] Barros, A., and Ribeiro Jr., E., Some characterizations for Compact almost Ricci solitons, Proc. Amer. Math. Soc. 140 (2012),1033-1040.
[3] Blaga, A.M., Some Geometrical Aspects of Einstein, Ricci and Yamabe solitons, J. Geom. symmetry Phys. 52 (2019), 17-26.
[4] Blaga, A.M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.
[5] Cappelletti-Montano, B., Erken, I.K. and Murathan, C.,Nullity conditions in paracontact geometry, Differ. Geom. Appl. 30 (2012), 665-693.
[6] Deshmukh, S., Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie 55 (103) (2012), 41-50.
[7] Deshmukh, S., Alodan, H. and Al-Sodais, H., A Note on Ricci Soliton, Balkan J. Geom. Appl. 16 (2011), 48-55.
[8] Duggal, K. L., Almost Ricci Solitons and Physical Applications, Int. El. J. Geom., 2 (2017), 1-10.
[9] Duggal, K. L., A New Class of Almost Ricci Solitons and Their Physical Interpretation, Hindawi Pub. Cor. Int. S. Res. Not., Volume 2016, Art. ID 4903520 , 6 pages.
[10] Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262, Contemp. Math. 71, American Math. Soc., 1988.
[11] Erken, I.K. and Murathan, C., A complete study of three-dimensional paracontact ($\kappa, \mu, \nu)$-spaces, Int. J.Geom. Methods Mod. Phys. (2017). https://doi.org/10.1142/S0219887817501067.
[12] Erken, I.K., Yamabe solitons on three-dimensional normal almost paracontact metric manifolds, Periodica Mathematica Hungarica https://doi.org/10.1007/s10998-019-00303-3.
[13] Ivey, T., Ricci solitons on compact 3-manifolds, Diff. Geom. Appl. 3 (1993), 301-307.
[14] Kaneyuki, S. and Williams, F.L., Almost paracontact and parahodge structures on manifolds, Nagoya Math. J. 99 (1985), 173-187.
[15] Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A., Ricci almost solitons, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10(2011), 757-799.
[16] Satō, I., On a structure similar to the almost contact structure, Tensor (N.S.) 30(1976), 219-224.
[17] Sharma, R., Almost Ricci solitons and K-contact geometry, Monatsh Math. 175 (2014), 621-628.
[18] Turan, M., De, U. C. and Yildiz, A., Ricci solitons and gradient Ricci solitons in three-dimensional trans-sasakian manifolds, Filomat 26 (2012), 363-370.
[19] Yano, K., Integral Formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.
[20] Yildiz, A., De, U. C. and Turan, M., On 3-dimensional f-Kenmotsu manifolds and Ricci solitons, Ukrainian Math.J. 65 (2013), 684-693.

Krishnendu De

Kabi Sukanta Mahavidyalaya,
Bhadreswar, P.O.-Angus, Hooghly
Pin 712221, West Bengal, India.
E-mail: krishnendu.de@outlook.in

Uday Chand De

Department of Pure Mathematics, University of Calcutta
35, Ballygunge Circular Road, Kol- 700019, West Bengal, India.
E-mail: uc_de@yahoo.com

