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A NOTE ON ALMOST RICCI SOLITON AND

GRADIENT ALMOST RICCI SOLITON ON

PARA-SASAKIAN MANIFOLDS

Krishnendu De and Uday Chand De

Abstract. The object of the offering exposition is to study almost
Ricci soliton and gradient almost Ricci soliton in 3-dimensional para-
Sasakian manifolds. At first, it is shown that if (g, V, λ) be an almost
Ricci soliton on a 3-dimensional para-Sasakian manifold M , then
it reduces to a Ricci soliton and the soliton is expanding for λ=-
2. Besides these, in this section, we prove that if V is pointwise
collinear with ξ, then V is a constant multiple of ξ and the manifold
is of constant sectional curvature −1. Moreover, it is proved that
if a 3-dimensional para-Sasakian manifold admits gradient almost
Ricci soliton under certain conditions then either the manifold is
of constant sectional curvature −1 or it reduces to a gradient Ricci
soliton. Finally, we consider an example to justify some results of
our paper.

1. Introduction

A Riemannian or pseudo-Riemannian manifold (M, g) obeys a Ricci
soliton equation, (see Hamilton [10]) if there exists a complete vector
field V , called potential vector field satisfying

(1.1)
1

2
£V g + S = λg,
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where £V is the Lie derivative operator, λ is a real scalar and S is
the Ricci tensor. It will be named shrinking, steady or expanding
according as λ > 0, λ = 0 or λ < 0, respectively. Otherwise, it will
be called indefinite. The Ricci soliton has been studied by several
authors such as ( [3], [6], [7], [10], [13], [18], [20]) and many others.
As a generalization of Ricci soliton, the notion of almost Ricci soliton
was introduced by Pigola et. al. [15], where basically they modified the
definition of Ricci soliton by affixing the condition on the parameter λ
to be a variable function in (1.1). In the present paper, we study the
para-Sasakian manifold admitting an almost Ricci soliton which plays
an important role in coeval mathematics.
When the vector field V is the gradient of a smooth function f : Mn →
R, then the manifold will be called gradient almost Ricci soliton. In this
case the antecedent equation takes the form

(1.2) ∇2f + S = λg,

where ∇2f stands for the Hessian of f .
Over and above, the almost Ricci soliton will be called trivial if the vec-
tor field X is trivial, or the potential f is constant, otherwise, it will be a
non-trivial almost Ricci soliton. In this context, we mention that when
n ≥ 3 and X is Killing vector field an almost Ricci soliton will be a Ricci
soliton, since in this case, we have an Einstein manifold, from which we
can take up Schur’s lemma to presume that λ is constant. Since the
soliton function, λ is not necessarily constant, surely comparison with
soliton theory will be modified. In particular, the rigidity result con-
tained in Theorem 1.3 of [15] indicates that almost Ricci soliton should
reveal a fair board generalization of the productive concept of classical
soliton. In truth, we refer the reader to [15] to see some of these changes.
In the way to fathom the geometry of almost Ricci soliton, Barros and
Ribeiro Jr. proved in [2] that a compact gradient almost Ricci soli-
ton with non-trivial conformal vector field is isometric to a Euclidean
sphere. In the same paper, they proved an integral formula for the com-
pact case, which was applied to prove various rigidity results, for more
trifles see [2].
The existence of Ricci almost soliton has been verified by Pigola et.
al. [15] on some certain class of warped product manifolds. Some char-
acterization of Ricci almost soliton on a compact Riemannian manifold
can be found in( [1], [2]). It is fascinating to note that if the potential
vector field V of the Ricci almost soliton (M, g, V, λ) is Killing then the
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soliton becomes trivial, provided the dimension of M > 2. Moreover, if
V is conformal then Mn is isometric to Euclidean sphere Sn. Thus the
Ricci almost soliton can be considered as a generalization of Einstein
metric as well as Ricci soliton. The almost Ricci solitons have been
studied by several authors such as ( [8], [9], [15], [17])and many others.
Motivated from the above studies, we make the contribution to inves-
tigate an almost Ricci soliton and gradient almost Ricci soliton in a
3-dimensional para-Sasakian manifold.
The present paper is constructed as follows: In section 2, we recall some
basic facts and formulas of para-Sasakian manifolds which we will need
throughout the paper. In section 3, we prove that if (g, V, λ) be an al-
most Ricci soliton on a 3-dimensional para-Sasakian manifold M , then
it reduces to a Ricci soliton and the soliton is expanding for λ=-2. Be-
sides these, in this section, we prove that if V is pointwise collinear
with ξ, then V is a constant multiple of ξ and the manifold is of con-
stant sectional curvature −1. Finally, in section 4, it is proved that if
a 3-dimensional para-Sasakian manifold admits gradient almost Ricci
soliton under certain conditions then either the manifold is of constant
sectional curvature −1 or it reduces to a gradient Ricci soliton. Then
we consider an example to verify the results of our paper. This paper
terminates with a small bibliography which by no means is exhaustive
but contains only those references which have been consulted during the
preparation of the present paper.

2. Para-Sasakian manifolds

In this section, we gather the formulas and results of the para-Sasakian
manifold which will be required in later sections. To know more fact
about paracontact metric geometry, we may refer to ( [4], [14]) and ref-
erences therein. Several years ago, the notion of Paracontact metric
structures was introduced in [14]. Since the publication of [14], paracon-
tact metric manifolds have been studied by many authors in recent years.
The importance of para-Sasakian geometry has been pointed out espe-
cially in the last years by several papers highlighting the exchanges with
the theory of para-Kähler manifolds and its role in semi-Riemannian
geometry and mathematical physics ( [5, 11, 12]).
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Let M be an 2n + 1-dimensional differentiable manifold of class C∞

in which there are given a (1, 1)-type tensor field φ, a vector field ξ and
a 1-form η such that

(2.1) φ2X = X − η(X)ξ, φξ = 0, η(ξ) = 1, η(φX) = 0.

Then (φ, ξ, η) is called an almost paracontact structure and M an almost
paracontact manifold. Moreover, if M admits a semi-Riemannian metric
g such that

(2.2) g(ξ,X) = η(X), g(φX, φY ) = −g(X, Y ) + η(X)η(Y ),

then (φ, ξ, η, g) is called an almost paracontact metric structure and M
an almost paracontact metric manifold [16].
We can now define the fundamental 2-form of the almost paracontact
metric manifold by Φ(X, Y ) = g(X,φY ). If dη(X, Y ) = g(X,φY ), then
(M,φ, ξ, η, g) is said to be paracontact metric manifold.
A normal paracontact metric manifold is called a para-Sasakian mani-
fold. In a para-Sasakian manifold the following relations hold :

(2.3) R(X, Y )ξ = η(X)Y − η(Y )X,

(2.4) (∇Xφ)Y = −g(X, Y )ξ + η(Y )X,

(2.5) ∇Xξ = −φX,

(2.6) R(X, ξ)Y = g(X, Y )ξ − η(Y )X,

(2.7) S(X, ξ) = −(n− 1)η(X), Qξ = −(n− 1)ξ,

(2.8) S(φX, φY ) = −S(X, Y )− (n− 1)η(X)η(Y ),

for any vector fieldsX, Y, Z whereQ is the Ricci operator, i.e., g(QX, Y ) =
S(X, Y ) of the manifold.
An almost paracontact metric manifold M is said to be η-Einstein if
there exist smooth functions a and b, such that

(2.9) S(X, Y ) = ag(X, Y ) + bη(X)η(Y ),

for all X, Y ∈ TM . If b = 0, then M becomes an Einstein manifold.
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3. Almost Ricci soliton

The infamous Riemannain curvature tensor of a three dimensional
semi-Riemannian manifold is given by

R(X, Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

−r
2

[g(Y, Z)X − g(X,Z)Y ],(3.1)

for any vector fields X, Y, Z where r is the scalar curvature of the mani-
fold. Replacing Y=Z=ξ in the above equation and using (2.3) and (2.7)
we obtain(see [12]

QX =
1

2
[(r + 2)X − (r + 6)η(X)ξ].(3.2)

In view of (3.2) the Ricci tensor is written as

S(X, Y ) =
1

2
[(r + 2)g(X, Y )− (r + 6)η(X)η(Y )].(3.3)

Now before introducing the detailed proof of our main theorem, we
first state the following result [12]:

Lemma 3.1. For a 3-dimensional para-Sasakian manifold (M3, φ, ξ, η, g),
we have

ξr = 0(3.4)

where r denotes the scalar curvature of M .

We consider a 3-dimensional para-Sasakian manifold M admitting an
almost Ricci soliton defined by(1.1). Using (3.3) in (1.1) we write

(£V g)(Y, Z) = (2λ− r − 2)g(Y, Z) + (r + 6)η(Y )η(Z).(3.5)

Differentiating the above equation with respect to X and making use
(2.7) we obtain

(∇X£V g)(Y, Z) = [2(Xλ)− (Xr)]g(Y, Z) + (Xr)η(Y )η(Z)

−(r + 6){g(X,φY )η(Z) + η(Y )g(X,φZ)}.(3.6)

Now we recall the following well-known formula(Yano [19]):

(£V∇Xg−∇X£V g−∇[V,X]g)(Y, Z) = −g((£V∇)(X,Y ), Z)−g((£V∇)(X,Z), Y ),

for any vector fields X, Y, Z on M . From this we can easily deduce:

(∇X£V g)(Y, Z) = g((£V∇)(X, Y ), Z) + g((£V∇)(X,Z), Y ).(3.7)
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Since £V∇ is symmetric tensor of type (1,2), it follows from (3.7) that

g((£V∇)(X, Y ), Z)

=
1

2
(∇X£V g)(Y, Z) +

1

2
(∇Y£V g)(X,Z)− 1

2
(∇Z£V g)(X, Y ).(3.8)

Using (3.6) in (3.8) we get

2g((£V∇)(X, Y ), Z) = [2(Xλ)− (Xr)]g(Y, Z) + (Xr)η(Y )η(Z)

+[2(Y λ)− (Y r)]g(X,Z) + (Y r)η(X)η(Z)

−[2(Zλ)− (Zr)]g(X, Y )− (Zr)η(X)η(Y )

−2(r + 6)g(X,φY )η(Z).(3.9)

After substituting X = Y = ei in the above equation and removing Z
from both sides, where {ei} is an orthonormal basis of the tangent space
at each point of the manifold and taking

∑
i, 1 ≤ i ≤ 3, we have

(£V∇)(ei, ei) = −Dλ,(3.10)

where Xα = g(Dα,X), D denotes the gradient operator with respect to
g.
Now differentiating(1.1) and using it in (3.7) we can easily determine
(3.11)
g((£V∇)(X, Y ), Z) = (∇ZS)(X, Y )− (∇XS)(Y, Z)− (∇Y S)(X,Z).

Taking X = Y = ei (where {ei} is an orthonormal frame) in (3.11) and
summing over i we obtain

(£V∇)(ei, ei) = 0,(3.12)

for all vector fields Z. Associating (3.10) and (3.12) yields

Dλ = 0.(3.13)

This implies that λ is constant. This leads to the following theorem:

Theorem 3.1. An almost Ricci soliton on a 3-dimensional para-
Sasakian manifold reduces to a Ricci soliton.

Following the above theorem and removing Z from both sides of (3.9)
yields

2(£V∇)(X, Y ) = −(Xr)Y + (Xr)η(Y )ξ − (Y r)X + (Y r)η(X)ξ

+g(X, Y )Dr − η(X)η(Y )Dr − 2(r + 6)g(X,φY )ξ.(3.14)

Setting Y = ξ in the above equation and using (3.4) we obtain

2(£V∇)(X, ξ) = 0.(3.15)
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Taking covariant derivative of (3.15) along an arbitrary vector field Y
we get

2(∇Y£V∇)(X, ξ) + 2(£V∇)(X,φY ) = 0.(3.16)

If, we apply the following formula:

(£VR)(X, Y )Z = (∇X£V∇)(Y, Z)− (∇Y£V∇)(X,Z)

in the above equation we have

(£VR)(X, ξ)ξ = 0.(3.17)

Taking Lie derivative of (2.3) along V we obtain

(£VR)(X, ξ)ξ +R(X,£V ξ)ξ + R(X, ξ)£V ξ

= (£V η(X))ξ + η(X)£V ξ.(3.18)

Using (2.3), (2.6) and (3.17) in the above equation we infer

g(X,£V ξ)ξ −2η(£V ξ)η(X)ξ = (£V η(X))ξ.(3.19)

Now setting Z = ξ in (3.5) it follows that (£V g)(Y, ξ) = (2λ + 4)η(Y ).
Lie-differentiating the equation (2.2) along V and by virtue of the last
equation we have

(£V η)(X)− g(£V ξ,X)− (2λ+ 4)η(X) = 0.(3.20)

Putting X = ξ in the foregoing equation gives

η(£V ξ) = −(2λ+ 4).(3.21)

By the help of (3.20) and (3.21), equation (3.19) provides λ = −2. Thus
we can state the following:

Theorem 3.2. Let (M3, φ, ξ, η, g) ba a para-Sasakian manifold. If
g represents an almost Ricci solitons, then the soliton is expanding for
λ = −2.

Now let the potential vector field V be pointwise collinear with ξ i.e.,
V = bξ, where b is a function on M . Then from (1.1) we have

g(∇Xbξ, Y ) + g(∇Y bξ,X) + 2S(X, Y ) = 2λg(X, Y ).(3.22)

Using (2.5) in (3.22), we get

(Xb)η(Y ) + (Y b)η(X) + 2S(X, Y ) = 2λg(X, Y ).(3.23)

Putting Y = ξ in (3.23) and using (2.7) yields

(Xb) + (ξb)η(X)− 4η(X) = 2λη(X).(3.24)
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Putting X = ξ in (3.24) we obtain

(ξb) = 2 + λ.(3.25)

Putting the value of ξb in (3.24) yields

db = (2 + λ)η.(3.26)

Operating (3.26) by d and using Poincare lemma d2 ≡0, we obtain

0 = d2b = (2 + λ)dη + dλη.(3.27)

Taking wedge product of (3.27) with η, we have

(2 + λ)η ∧ dη = 0.(3.28)

Since η ∧ dη 6= 0 in a 3-dimensional para-Sasakian manifold, therefore

λ = −2.(3.29)

Using (3.29) in (3.26) gives db = 0 i.e., b =constant. Therefore from
(3.23) we infer

S(X, Y ) = −2g(X, Y ),(3.30)

that is the manifold is an Einstein manifold and hence from (3.1) it
follows that the manifold is of constant sectional curvature −1.

Thus we can state the following:

Theorem 3.3. Let (M3, φ, ξ, η, g) ba a para-Sasakian manifold. If g
represents an almost Ricci solitons and V is pointwise collinear with ξ,
then V is constant multiple of ξ and the manifold is of constant sectional
curvature −1.

4. Gradient Almost Ricci soliton

This section is devoted to studying 3-dimensional para-Sasakian man-
ifolds admitting gradient almost Ricci soliton. For a gradient almost
Ricci soliton, we have

∇YDf = −QY + λY.(4.1)

where D denotes the gradient operator of g.
Differentiating (4.1) covariantly in the direction of X yields

∇X∇YDf = −∇XQY + (Xλ)Y + λ∇XY.(4.2)
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Similarly we get

∇Y∇XDf = −∇YQX + (Y λ)X + λ∇YX,(4.3)

and

∇[X,Y ]Df = −Q[X, Y ] + λ[X, Y ].(4.4)

In view of (4.2),(4.3) and (4.4) we have

R(X, Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df

= −(∇XQ)Y + (∇YQ)X + (Xλ)Y − (Y λ)X.(4.5)

In view of (3.2) we obtain

R(X, Y )Df =
(Y r)

2
X − (Xr)

2
Y − (Y r)

2
η(X)ξ +

(Xr)

2
η(Y )ξ

+(
r

2
+ 3)[η(X)φY − η(Y )φX] + (Xλ)Y − (Y λ)X.(4.6)

This reduces to

g(R(X, Y )ξ,Df) = (Y λ)η(X)− (Xλ)η(Y ).(4.7)

Using (2.3) in the above equation we obtain

η(X)(Y f)− η(Y )(Xf) = (Y λ)η(X)− (Xλ)η(Y ).(4.8)

Putting Y = ξ in (4.8) we have

d(λ− f) = ξ(λ− f)η.(4.9)

Operating (4.9) by d and using Poincare lemma d2 ≡0, we obtain

d[ξ(λ− f)]η ∧ dη = 0.(4.10)

Since in a 3-dimensional para-Sasakian manifold η ∧ dη 6= 0, we have

ξ(λ− f) = constant.(4.11)

Now contracting Y in (4.6) and using ξr = 0 we obtain

S(X,Df) =
1

2
(Xr)− 2(Xλ).(4.12)

Comparing (3.3) and (4.12) we have

1

2
(Xr)− 2(Xλ) =

(r + 2)

2
(Xf)− (r + 6)

2
η(X)(ξf).(4.13)

Substituting X = ξ and using ξr = 0 in (4.13) we obtain

ξ(λ− f) = 0.(4.14)
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In view of (4.9) and (4.14) we get

(λ− f) = constant.(4.15)

Suppose the soliton function λ is invariant under the characteristic vector
field ξ and the scalar curvature is constant. Then from (4.13) we have

(r + 6)(Xλ) = 0,(4.16)

which implies that either r = −6 or λ = constant.
If r=-6, then from (3.3) we get S = −2g , that is the manifold is an
Einstein manifold and hence from (3.1) it follows that the manifold is of
constant sectional curvature −1.

If λ = constant, then gradient almost Ricci soliton reduces to a gra-
dient Ricci soliton. Hence we can state the following:

Theorem 4.1. If a 3-dimensional para-Sasakian manifold admits a
gradient almost Ricci soliton (f, ξ, λ), then either the manifold is of con-
stant sectional curvature −1 or it reduces to a gradient Ricci soliton,
provided the soliton function λ is invariant under the characteristic vec-
tor field ξ and the scalar curvature is constant.

5. Example

Here we consider an example of the paper [12]. In this paper the
author considers the 3-dimensional manifold M = {(x, y, z) ∈ R3, z 6= 0}
and the vector fields

φe2 = e1 = 2y
∂

∂x
+ z

∂

∂z
, φe1 = e2 =

∂

∂y
, ξ = e3 =

∂

∂x

and shows that the manifold is a para-Sasakian manifold. Also the
author has obtained the expressions of the curvature tensor and the
Ricci tensor respectively as follows:

R(e1, e2)ξ = 0, R(e2, ξ)ξ = −e2, R(e1, ξ)ξ = −e1,

R(e1, e2)e2 = −3e1, R(e2, ξ)e2 = −ξ, R(e1, ξ)e2 = 0,

R(e1, e2)e1 = −3e2, R(e2, ξ)e1 = 0, R(e1, ξ)e1 = ξ
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and

S(e1, e1) = −g(R(e1, e2)e2, e1) + g(R(e1, e3)e3, e1)

= 2

= 2g(e1, e1).

Similarly, we have

S(e2, e2) = 2g(e2, e2) and S(e3, e3) = 2g(e3, e3).

Therefore,

r = S(e1, e1)− S(e2, e2) + S(ξ, ξ) = 2.

After writing V = ae1 + be2 + ce3; a, b, c are real number and using
the equation

(£V g)(X, Y ) = £V g(X, Y )− g(£VX, Y )− g(X,£V Y )

we have

(£ae1+be2+ce3g)(X, Y ) = a[g(∇Xe1, Y ) + g(X,∇Y e1)]

+ b[g(∇Xe2, Y ) + g(X,∇Y e2)]

+ c[g(∇Xe3, Y ) + g(X,∇Y e3)].

Using the Lie derivatives, we obtain

(£V g)(e1, e1) = 0, (£V g)(e2, e2) = 0, (£V g)(e3, e3) = 0,

(£V g)(e1, e2) = (£V g)(e2, e1) = 0,

(£V g)(e1, e3) = (£V g)(e3, e1) = −2b,

(£V g)(e3, e2) = (£V g)(e2, e3) = 2a.

Hence, from the above equations for being £V g = 0, we get a = b = 0.
Again

(£cξg)(e1, e1)) + 2S(e1, e1) + 2λg(e1, e1) = 0,

(£cξg)(e2, e2)) + 2S(e2, e2) + 2λg(e2, e2) = 0,

(£cξg)(e3, e3)) + 2S(e3, e3) + 2λg(e3, e3) = 0,

for λ = −2 .
Thus we have

(£cξg)(ei, ej)) + 2S(ei, ej) + 2λg(ei, ej) = 0,
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for i, j = 1, 2, 3 and λ = −2 . So, the constructed metric reduces to a
Ricci soliton. Thus the Theorem 3.1. and Theorem 3.2. are verified.

References

[1] Barros, A., Batista, R. and Ribeiro Jr., E., Compact almost Ricci solitons with
constant scalar curvature are gradient, Monatsh. Math., DOI 10.1007/s00605-
013-0581-3.

[2] Barros, A., and Ribeiro Jr., E., Some characterizations for Compact almost Ricci
solitons, Proc. Amer. Math. Soc. 140 (2012),1033–1040.

[3] Blaga, A.M., Some Geometrical Aspects of Einstein, Ricci and Yamabe solitons,
J. Geom. symmetry Phys. 52 (2019), 17–26.

[4] Blaga, A.M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom.
Appl. 20 (2015), 1–13.

[5] Cappelletti-Montano, B., Erken, I.K. and Murathan, C.,Nullity conditions in
paracontact geometry, Differ. Geom. Appl. 30 (2012), 665–693.

[6] Deshmukh, S., Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci.
Math. Roumanie 55 (103) (2012), 41–50.

[7] Deshmukh, S., Alodan, H. and Al-Sodais, H., A Note on Ricci Soliton, Balkan
J. Geom. Appl. 16 (2011), 48–55.

[8] Duggal, K. L., Almost Ricci Solitons and Physical Applications, Int. El. J.
Geom., 2 (2017), 1–10.

[9] Duggal, K. L., A New Class of Almost Ricci Solitons and Their Physical Inter-
pretation, Hindawi Pub. Cor. Int. S. Res. Not., Volume 2016, Art. ID 4903520,
6 pages.

[10] Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity
(Santa Cruz, CA, 1986), 237–262, Contemp. Math. 71, American Math. Soc.,
1988.

[11] Erken, I.K. and Murathan, C., A complete study of three-dimensional
paracontact (κ, µ, ν)-spaces, Int. J.Geom. Methods Mod. Phys. (2017).
https://doi.org/10.1142/S0219887817501067.

[12] Erken, I.K., Yamabe solitons on three-dimensional normal almost
paracontact metric manifolds, Periodica Mathematica Hungarica
https://doi.org/10.1007/s10998-019-00303-3.

[13] Ivey, T., Ricci solitons on compact 3-manifolds, Diff. Geom. Appl. 3 (1993),
301–307.

[14] Kaneyuki, S. and Williams, F.L., Almost paracontact and parahodge structures
on manifolds, Nagoya Math. J. 99 (1985), 173–187.

[15] Pigola, S., Rigoli, M., Rimoldi, M. and Setti, A., Ricci almost solitons, Ann.
Sc. Norm. Super. Pisa Cl. Sci. 10(2011), 757–799.
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