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THE CHEREDNIK AND THE GAUSSIAN CHEREDNIK
WINDOWED TRANSFORMS ON R¢ IN THE
W-INVARIANT CASE

AMINA HASSINT AND KHALIFA TRIMECHE

ABSTRACT. In this paper we give the harmonic analysis associated
with the Cherednik operators, next we define and study the Chered-
nik wavelets and the Cherednik windowed transforms on R?, in the
We-invariant case, and we prove for these transforms Plancherel and
inversion formulas. As application we give these results for the
Gaussian Cherednik wavelets and the Gaussian Cherednik windowed
transform on R? in the W-invariant case.

1. Introduction

The windowed Fourier transform was introduced by the physicist Den-
nis Gabor in 1946. The basic idea is to replace in the usual Fourier trans-
form, the function analysed by the product of this function by a regular
function called windowed function. The classical windowed transform of
a function f is given by:

V(N0 = [ f@onlade, Ay R
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where gy, is the classical wavelet defined by
729(y) o—i(ra)
17291l

with 7, the classical translation operator defined for z € R?, by

Dry(T) =

Y

7.9(y) = gz —y), y R

One of the aims of the windowed Fourier transform, is to provide
an easily interpretable visual representation of signal. Moreover, this
transform can be applied to wide scientific research areas ranging from
signal analysis in geophysics and acoustics, to quantum theory and pure
mathematics (see [5]).

In [1], Cherednik introduced a family of differential-difference opera-
tors that nowadays bear his name. We define and study in this paper
the Cherednik wavelets and the
Cherednik windowed transform on R¢?, in the W-invariant case. To
achieve this, we consider the Cherednik operators Tj,5 = 1,2,...,d, on
R? associated to a root system R, a reflection group W and a non neg-
ative multiplicity function k.

Next, we introduce the Heckman-Opdam hypergeometric function Fy, A\ €
C?, given by

1
VzeRY Fyz)=— Z Gy (wz),

where Gy, A € C? is the unique solution of the differential-difference
system

T']G)\([E) = Z.)\jG)\<J]), 1=1,2,...,d,x € Rd7
a0 =1

By using the function F), we define the hypergeometric Fourier trans-
form H"W for regular W-invariant function f on R¢ by

HY(NHN) = | fl)F () Ag()dz, A eRY,
Rd
where Ay is a weight function, and the hypergeometric translation op-
erator TV, x € R%, by
HY (T ()N = Ex@)HY (f)(A), A eR?

With the aid of these results, we define and study the Cherednik
windowed transform ®;(f) given for a regular W-invariant function f
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on RY by

(NN y) = | J@)gs,(@)Ax(z)dr, Ay e R?,
R
where g3 , is the family of Cherednik wavelets associated to the Heckman-
Opdam theory defined on R¢ by
1%
7, 9(@)
T 9ll%,

Next, we prove Plancherel and inversion formulas for the transform ®7.

Iy (@) = Foa(@)

In the last section we define the heat kernel p}"(z,y) associated to
the Heckman-Opdam theory by

PV (o) = [ ISP () By ()l ()
R
Then by using the relation
! (w,y) = T (B")(y),
where E}V is the fundamental solution of the heat operator associated
to the Cherednik operators on RY, we define and study the Gaussian

Cherednik windowed transform <I>gt given for a regular W-invariant func-
tion f on R? by

B N0 = [ @6 @) A,

where Gity is the Gaussian Cherednik wavelet given by

AC)
P! (@, M2
and by taking as function g of the Section 4, the function E}V, we prove
for the transform q)‘gt analogous results to the results of the Section 5.

GYy(@) = Fox(2)

2. The Cherednik operators and their eigenfunctions (see

[6](8])

We consider R? with the standard basis {e;,i = 1,2,...,d} and the
inner product (.,.) for which this basis is orthonormal. We extend this
inner product to a complex bilinear form on C¢.



652 Amina Hassini and Khalifa Triméche

2.1. The root system, the multiplicity function and the
2
Cherednik operators. Let a € R\ {0} and & = ——a. We denote

e[|
by
ro(z) =2 — (&, 2)a, 2z €RY,
the reflection in the hyperplan H, C R¢ orthogonal to «.

A finite set R C R\ {0} is called a root system if R N Ra = {£a}
and r,R = R, for all @« € R. For a given root system R the reflections
ra, @ € R, generate a finite group W C O(d), called the reflection group
associated with R. For a given 8 € R%\ U,er H,, we fix the positive
subsystem R, = {a € R,(«a,5) > 0}, then for each a € R either
o € Ry or —a € Ry. We denote by RY the set of positive indivisible
roots. Let

at ={r eR"VaecR,(a,z) >0}
be the positive Weyl chamber. We denote by a* its closure. Let also
R?,, = RA\UaerH, be the set of regular elements in R,

A function k : R — [0, 4o00[ is called a multiplicity function if it is

invariant under the action of the reflection group W. We introduce the

index
y=1(R)= ) k). (2.1)
a€ER 4
Moreover, let Aj be the weight function

VzeRy, Ayz) = g \zsinh<%,x>|%<a>,
a€R+

which is W-invariant.

The Cherednik operators T}, j = 1,2, ...,d, on R? associated with the
reflection group W and the multiplicity function k, are defined for f of
class C' on R% and = € R? by

reg

11(0) = 510+ 30 B 0) = o)} = ).

acRy

where |
Pi=35 Z k(a)a?, and o/ = {a,e;).
a€R4
In the case k(o) = 0, for all @ € R, the operators 7,5 = 1,2,...d,

reduce to the corresponding partial derivatives. We suppose in the fol-
lowing that & # 0.
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The Cherednik operators form a commutative system of differential-
difference operators.

For f of class C! on R? with compact support and g of class C* on
R?, we have for j = 1,2, ..,d:

[ Tt Aards = = [ @)+ 50t Aia)ds,

with
VazeRY Sg(z) = Z k(a)alg(ram).

aER 4+

2.2. The Opdam-Cherednik kernel and the Heckman-Opdam
hypergeometric function (see [6][8]). We denote by Gy, A € C%, the
eigenfunction of the operators 73,7 = 1,2,..,d. It is the unique analytic
function on R? which satisfies the differential-difference system

T;Gy(z) =i\NGa(z), j=1,2,..,d,x € RY (29)
GA(0) = 1. ’
It is called the Opdam-Cherednik kernel.
We consider the function F)\ defined by
1
VzeRY Fy(z)= 7 > Gi(wz). (2.3)

weW

The function F)(x) called the Heckman-Opdam hypergeometric func-
tion, it is W-invariant both in A and =z.
The functions G and F) possess the following properties

i) For all A € C%, the functions z — Gy(z) and * — Fy(x) are of
class C™ on R?,
ii) For all z € RY, the functions A\ — Gy(x) and A — F\(x) are entire
on C%.
iii) For all z € R? and A € C?, we have

Gi(z) = G_x(z) and Fy\(z) = F_5(z). (2.4)
iv) For all x € R? and A\ € R%, we have

|Ga(@)] < [W[Y2 and |Ey(x)] < [W]'2. (2.5)
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v) Let p and ¢ be polynomials of degree m and n. Then, there exists
a positive constant M such that for all A € C? and =z € RY, we

have
| (e < M1+ [2])™ (1 + [[A]])" Fy () e maxwew fmtwA)
Pl )Gr@)] < MO+ )™ (1 + [N Fo(w)e .
(2.6)
The same inequality is also true for the function F)(z).
vi) The function Fy(x) satisfies the estimate
Vaeay, Fo(zr) < e ] (14 (a,2)). (2.7)

0
a€RY

ExXAMPLE 2.1. For d = 1 and W = Z,, the root system is R =
{—2a, —a,a,2a} with o = 2. Here Ry = {a,2a}. We consider the
multiplicity function k. We put k; = k() + k(2a), ke = k(2a), and
p = k() + 2k(2a) = ki + 2ks.

The Cherednik operator is the following

170 = g1+ (o + 12 ) () — f(-a) o),

which can also be written in the form

T,7(x) = - 7(x) + (ks coth(a) + ks tanb(2) (F(x) — f(~2)) — pF(~a).

The Opdam-Cherednik kernel is given by

a,b 1 d a,b
Ve e RYAEC, Gi(z) =" (z)+ i — p%gﬁg '(x),
where gpf\a’b) (z) is the Jacobi function (see[4]), with a = k; — 5 and
b = ]Cg - %

The Heckman-Opdam hypergeometric function has the form
Vz e RVA € C, Fy(z) =" (x).
(See [2] p.164-165 and 167.)

3. The harmonic analysis associated to the Heckman-Opdam
theory on R?

Notations. We denote by
- E(RHYW the space of C®-functions on R?, which are W-invariant.
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- D(RHW the space of C®-functions on R?, with compact support
and WW-invariant.

- S(RHYW the space of W-invariant functions of the classical Schwartz
space S(RY).

- So(RH)W the space of C*®-functions on R¢, which are W-invariant,
and such that for all /,n € N,

piald) = sup (1+ [l (Bo(w) DS (0)] < o
zeR?
where

D — Bl

d
= o g 1 Umesa) €Nl =3

Its topology is defined by the semi-norms py,,¢,n € N.
- PW,(CHW a > 0, the space of entire functions g on C?, which are
W-invariant and satisfying

Vm €N, gn(g) = sup (14 [[A)"e " g(N)] < +o0.
AeCd

The topology of PW,(C?) is defined by the semi-norms ¢,,, m € N.
We set
PW(CHY = UysgPW,(CHY.

This space is called the Paley-Wiener space. It is equipped with the
inductive limit topology.

3.1. The hypergeometric Fourier transform. The hypergeometric
Fourier transform H" has been defined and studied first by E.M.Opdam
in [6] on the space of W-invariant C*°-functions on R%.

DEFINITION 3.1. The hypergeometric Fourier transform H" is de-
fined for f in D(RH)W (resp. So(RH)WY) by

VAeCLHY(f)(N) = » f(@)Fo\(z)Ag(z)dx. (3.1)

PROPOSITION 3.1. For all f in D(RY)W (resp. Sy(R%)W) we have the
following relations

VA e RLHY(F)(N) = HY(F)(N), (3.2)

VA eRLHY (V) = HY () (=N), (3.3)
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where f is the function defined by
VeeR’, f(x)=f(-=).

THEOREM 3.1.
i) The hypergeometric Fourier transform H" is a topological isomor-
phism from

o  DRHY onto PW(CHW.

o S (RHWY onto S(RHYW.
ii) The inverse transform (H")™! is given by

VaeRY (HY)(h)(z) = /R ) h(N) Fx(x)CY (N)dA, (3.4)

where
Gy (A) = clew(M)[ 7, (3.5)
with ¢ a positive constant chosen in such a way that C}V (—p) = 1, and
P((i, &) + 3k(%))
() = 1] T((iX, &) +k(a)2+ izc(a)) ’ (3:6)
aER 4+ ’ 2 2

with the convention that k(§) = 0 if § ¢ R.
(See [10][11]).

REMARK 3.1. The function C}¥ is continuous on R? and satisfies the
estimate

VAR |ICY (V)| < const.(14 ||\, (3.7)
for some s > 0.

Notations. We denote by
- LY, (RHW 1 < p < +o0o, the space of measurable functions f on R?
which are W-invariant and satisfying

1/p
flan = ([ 1#@PAGde) " < o0, 1<p <o

Hf“Ak,oo = €8s sup |f(x)’ < +00.
zcRd

- L2y (RT)W, 1 < p < 400, the space of measurable functions f on
k

R?, which are W-invariant and satisfying

1/p
s = ([ IFOPEE0R) " <o, 1<p <+,

1fllewo = esssup|f(A)] < +oc.
AER4
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REMARK 3.2.
i) The space D(RY)" is dense in the space L% (R)".
ii) Sy(RH)W € L2, (RT)W.

DEFINITION 3.2. The hypergeometric Fourier transform H" is de-
fined for f in LY (R)W by

VAERLHY(H)(N) = 5 f(z)F_\(2) Ap(x)dz. (3.8)

THEOREM 3.2.
i) (Plancherel formulas). For all f,g in L%, (R")" we have

Rdf(&?)mflk(w)div: Rd%W(f)(A)HW(g)(A)CZV (A)dA. (3.9)
and

1 llaz = IHY (Hllew 2- (3.10)

ii) (Plancherel theorem). The hypergeometric Fourier transform
H" extends uniquely to an isometric isomorphism from L%, (R")" onto
L(QZZV (RHW,

THEOREM 3.3. For all f in L% (RY)" such that H" (f) belongs to
Liw (RY)W, we have the following inversion formula
k

f@)= [ HY(HN)F(2)CF (N)dA, ae. xR (3.11)
R4
REMARK 3.3. The inversion formula (3.11) is also true for all bounded
function f in L} (RY)" such that H" (f) belongs to L (R%)".
k
3.2. The hypergeometric translation operator.

DEFINITION 3.3. The hypergeometric translation operator TV, x €
R?, is defined on
L3, (R)Y by
HY(T()N) = Fa(@)HY (f)(N), A eR™ (3.12)

PROPOSITION 3.2. For all f in Lilk (RHW | the mapping x — T,V (f)
is continuous from R? into L% (R*)" and we have

1T (Dllae < W2,z (3.13)
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PROPOSITION 3.3. The operator T,V x € RY, satisfies the following
properties
i) For all z € RY, the operator T,V is continuous from £(RH)W into itself.
i) For all f in E(RYY and x,y € R?, we have

TV (£)(0) = f(z) and T," (f)(y) = T," (f)(). (3.14)

iii) For all z,y € R? and A € C¢, we have the product formula
TV (F)(y) = Fa(x).Fi(y), (3.15)
where F) is the Heckman-Opdam hypergeometric function given by

(2.3).

iv) For all functions g € ERHW, f € DR)W and x € R, we have

T @I OAWE = [ g TUOO Ay, (310

R4 R4

PROPOSITION 3.4. Let g be a function in (LY, N L% )(RY)"W.
i) For all x € R, we have

IT sl = [ IR@FRYOWEC s (317

i) the function x — || TV g|| 4,2 is continous on R?.

Proof. 1) We deduce the result from Theorem 3.2 and the relation
(3.12).
ii) We consider the relation (3.17).
For all x € RY, the function A — |F)\(2)]?|H" (g)(\)]? is continuous
on R? and from (2.5) it is bounded by |W||HY (¢)(\)|* which is in
Lék (RHW | then from the dominated convergence theorem, the function
x — [TV g|| 4, 2 is continuous on RY. O

3.3. Definition and properties of the heat kernels.

3.3.1. The heat kernel p}’ (z,y), t > 0.

DEFINITION 3.4. Let ¢t > 0. The heat kernel p}" (z,y) associated to
the Heckman-Opdam theory, is defined for z,y € R?, by

Y (2,y) = / e INPHIPIR) By () Fy (—y)Cl (). (3.18)
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Notations We denote by
- H}V the heat operator associated with the Cherednik operator on
R? given by
9 2
3.19
= = llol?, (319)

where £}V is the Heckman-Opdam Laplacian defined for f of class C?
on R? by

Y =Ly -

d
Ly f= Z T2f. (3.20)
It has the following form : For all x € ]ng,
£ f(x) + Y k@) coth(S,2)(Vf(2),a) + [pl2f(x), (3:21)
aER 4

where A and V are respectively the usual Laplacian and the gradient
on R¢
- B}V, t > 0, the fundamental solution of the operator H}" given by

VzeRYEY(z)=pl¥(z,0). (3.22)

PROPOSITION 3.5.

i) For all t > 0, the function E}V belongs to Sy(R?).
ii) For allt > 0 and z € R?, we have

EV(z) <t % TT (1 + o @) [)(1 + 2 + [, @) [yHe et
aeRY
[T

w e~ tlol?—{p.at) 1] (3.23)

?

where xt denotes the unique conjugate of x in a.
iii) For all t > 0, we have

VA e RLHV(ENY(A) = e NP+, (3.24)
iv) The function (x,t) — E () is strictly positive on R¢x]0, +o0.
v) For all t > 0, we have
/ EY () Ay (z)dz = 1. (3.25)
R4
vi) We have
HY(E)(x) =0, on R*x]0, +o0l. (3.26)
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PROPOSITION 3.6.

i) For all t > 0 and v € R?, the function y — p}' (z,y) belongs to
Sy (RY).
ii) For allt > 0 and x,y € R, we have

i (z.y) = TN (E)(). (3.27)

iii) The function p}" (x,y) is strictly positive on R? x R?x]0, +o0.
iv) For allt > 0 and z € R, we have

| it =1. (3.28)

v) For all y € R4, the function (x,t) — p!¥ (x,y) satisfies
=Y (p¥)(x,y) = 0, on R?x]0, 4-o0]. (3.29)

PROPOSITION 3.7.
For all x € R and t €]0, +o00| we have

||pr(;g’ )Hitkz = /Rd ]F,\(q;)|2e*2t(HAl|2+“p“2)C,ZV()\)d)\. (3_30)

Proof. We deduce (3.30) from (3.17) and (3.24). O

3.3.2. The heat kernel pi¥ (—x,/Ty), T > 0.

DEFINITION 3.5. Let T > 0. The heat kernel p!¥ (—x,+/Ty) associ-
ated to the Heckman-Opdam theory, is defined for z,y € R?, by

P (—a,VTy) = / e~ 5INPH) By (2) Fy (VT)Cl (M)A, (3.31)

R4

(See [7],[8])-
The function pY (—x,/Ty) satisfies the following property.

PROPOSITION 3.8. There exists a constant K > 0, such that for any
xr € at and any y € at, we have

7 (+HRED

DY (=, VTy) ~ Kb 0ulP+lal?)
(See [7] p.56)

Fy(x)Fo(VTy).  (3.32)
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REMARK 3.4. We denote by
EY (z) = pY (—2,0).
Thus
v (=2, VTy) = iV (EF)(VTy). (3.33)

PrRoPOSITION 3.9. Foa all € > 0, there exist Ty > 0 such that for all
T > Ty, we have

Yo,y € at, 0<plV(—z,VTy) < D(T)e WP Fy(2)Fy(VTy), (3.34)
with

—(Z ’R+
llp|PT~ (2R D

D.(T) = (1+€)Ke 2 (3.35)

Proof. Let C(z,y,T) the second member of the relation (3.32). For
all € > 0, there exists Ty > 0 such that for all T > Ti, we have

Wi_
|pT ( z, ﬁy) . 1| S €.
C(z,y,T)
Thus
w \/_
pr (=2, VTy) < (1+€)C(z,y,T). (3.36)
The relation (3.36) imply that
P (—2,VTy) < D(T)e 2 W By (2) Fy(VTy). (3.37)
with D.(T) given by the relation (3.34). O

COROLLARY 3.1. For all € > 0, there exist Ty > 0 such that for all
T > Ty, we have

Vo,y € at, [TV (EF)(VTy)]? < Culy, T)|Fo()|?, (3.38)
with
C.(y,T) = DX(T)e WP | Ry (VTy)%. (3.39)

ProprosITION 3.10. For all € > 0, there exists Ty > 0 such that for
all T > T, we have

Ve e RY, |7V (Er)|[%, 2 < const D*(T)|Fy()|* (3.40)
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Proof. The functions 7V (EV)(v/T y) and Ay(v/Ty) are W-invariant
with respect to the varlables x,y on R%. Then we have
v € RY, / 7 (BY)(2) [P Ay(2)dz < comst / |7 (BY)(VTy) 2 Ak (VTy)dy.
R +
’ (3.41)
By using the relations (3.41),(3.38),(3.39) we obtain

vz e RY, [|7V (Br)|[%, 2 < const DE(T)|F0(;U)|2/ e WP | By (VTy) 2 AR(VTy)dy

a

(3.42)
From the relation (2.7) and the fact that from [12] p. 237, we have
vy € RY A (VTy) < 221e2VTi0w), (3.43)

Then the integral of the second member of the relation (3.42) is equal
to the following integral which converge

227/ e TT (14 VTa, )2
at aER:’L

Thus the relation (3.42) can be written in the form given by the relation
(3.40). O

PROPOSITION 3.11. Let y € at and s €] — 00, 0[, then for all T > Ty,
We have

/ s (EF) (VTy)”
R

[TV (EPIE,

Ap(z)dx < const Co(y,T)/ e254PT)| H (1+(a, z))] =) da.
at

aER&
(3.44)
W (W Tu)|2
Proof. As the functions x 7 ‘(A/T 2/5\/:3” and Ay, are W-
|72 (BT )||Ak2
invariant on R¢, then we have
EW 2 2
/ I )WE\/_?/M Ay (z)dx < const/ " (E7 LE\/_yN A (x)d.
we [TV (ED)IIZ, o [T EDIE,2
(3.45)

By using the relations (3.40),(3.38), (3.39), we obtain
EW 2
/ 72" )(\/_y)| Ai(z)dx < const Cc(y, T)/ | Fo ()20 Ay () d.

||TW(EW)||Ak 2

(3.46)



The Cherednik and the Gaussian Cherednik Windowed transforms 663

From the relations (2.7) and (3.43), we obtain

/ | Fo ()|~ Ay (z)dz < const / e3P H (1+ (a, )P 9dz.
at at

aG’Ri
(3.47)
Then we deduce the relation (3.44) from the relations (3.46),(3.47).
U

The relation (3.44) implies the following Corollary.

oV (E})(VTy)

COROLLARY 3.2. The function x +—— g belongs to
72V (BT )%, 2
L4 (RHYW for s €] — 00,0].
Ew
PROPOSITION 3.12. The function = — 2 V(V :CV)V(\/_ v) belongs to
72V (B,

LR (RHYW for
s €] — 00, 0].

Proof. From the relations (3.33), (3.34), (3.40) we have
(B )(VTy) _

Vo € Rd W <
HTW(E Ny 2

< const DU~ (T)e’%“y”z(Fo(x))(lfs)Fg(\/Ty).

O

Thus this inequality gives the result of the Proposition.

o (E})(VTy)

COROLLARY 3.3. The function x — e
72V (B )5, 2

belongs to
(L%, N LE)(RHWY for s €] — o0, 0].
3.4. The hypergeometric convolution product.

DEFINITION 3.6. The hypergeometric convolution product f*qyw g of
the functions f, g in D(RH)W (resp. So(RH)W) is defined by

P / TV (=g Aly)dy.  (3.48)



664 Amina Hassini and Khalifa Triméche

PROPOSITION 3.13. Let f be in L% (R)" and g in Ly (R*)", then
the function f 4w g defined all most everywhere on R? by

P ga) = [ TV DE0a) Ay (349
belongs to L% (RY)Y, and we have
1f 200 gllace < W20 F Il a2 llgllas (3.50)
and
HY(f a0 g) = HY () H (9)- (3.51)

PROPOSITION 3.14. Let f and g be in L% (R*)". Then the function
f *yw g defined on R? by

Foor @) = [ TV Ay, (352
is continuous on R?, tends to zero at the infinity and we have

sup [f 3 g(2)] < W2 fllagellgl a2 (3.53)

Tre

4. The Cherednik wavelets on R? in the W-invariant case

We consider in this section a non negligible function ¢ in (L}4k N
12, ) (RY)W
Notation. We denote by N7, (R)"W, s €] — oo, 0], the space of measur-
able functions on R?, which are W-invariant and satisfying

d
11, /!f2 (@)dz

1TV gl 122 ,"
PROPOSITION 4.1. We have
L%, (RYY C N (RDW

Proof. Let f be in L% (R?). As the function g belongs to L% (R%),
then from the Proposition 3.2, we have

172" ()l a2 < [W[2[lg]]a,.2 (4.2)
By using the relations (4.1),(4.2) we obtain

—S 2(1—s
£z, < WO glE M a2 < oo
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Thus f belongs to N7 (RY)W O

DEFINITION 4.1. Let A,y € R%. The family {g5 , }scj—oo,0f of Chered-
nik wavelets on R? in the W-invariant case, is defined on R? by

7" 9(y)
T2 gl 2
PROPOSITION 4.2. We suppose that the function g is such that, for
all y € R? and
w xT
s €] — 00, 0[, the function v —» % belongs to (L% N L% )(R)W,
then the function g3, belongs to (L% N L%, )(RY)™.

93,(2) = F_o(2) (4.2)

Proof. We deduce the results from the relations (4.2),(2.5). O

REMARK 4.1. Let p!¥ (—xz,+/Ty) the function given by the relation
(3.40). Then {(p})} ,}sel—oc,0 is a family of Cherednik wavelets on R?.

PrRoOPOSITION 4.3. Under the hypothesis of Proposition 4.2 and if

3 154
moreover the functiony —s &9
Tl

then the function (X, y) — g3, is continuous from R*xR* into L% (R%)".

is continuous from R? into L% (R%)W,

Proof. Let (Ao, y0) € R? x R Using (4.2) we obtain

TV g(y) T 9(yo)
s s 3 £
_ < F_ -
e G T - oL P
TV g(yo)
| |(FoA©) = Forg (€)oo —
A Ao \mwg\uk,z‘ A2

T 9(y) 72V 9(vo) ) ‘

+ (F,)\(é.) — F)\o(f))(HEWg”i‘k’z - HEWgHilk,Q

A2

Using (2.5), we get

‘gs — g5 3|W |z Te o) T 9()
Ay Powo]| 4 17 all%, 2 T glli, 0 1Ak
7" 9(yo)
+ | © = P @) e |
3 k2 ’



666 Amina Hassini and Khalifa Triméche

From hypothesis i) we obtain

T 9(y) TV 9(y0)

||72W9HZ,572 H72W9||f4k,2

and from Proposition 4.2, the ralation (2.5) and the dominated conver-
gence theorem, we get

lim

Y—Yo

=0 4.3
el (4.3)

7 9(yo)
lim ||(FA(€) = Fon(€) ity e —|| =0 (44)
5, U = Pl e
Using (4.3),(4.4) we deduce that
I s g = 0.
apim 193y = 93owoll a2z =0
O

5. The Cherednik windowed transform on R¢ in the W-invariant
case

In this section, we take a non negligible function g in (LY, NL% )(R%)W
satisfying the hypothesis of Propositions 4.2, 4.3.

DEFINITION 5.1. Let s €] — 00,0[. The Cherednik windowed trans-
form @7 is defined for a regular W-invariant function f on R? by

(N0 = | F@eh, @A, Ay R (51)

REMARK 5.1. By using the relation (4.2) the relation (5.1) can also
be written in the following form

:(F)ny) = WY (f.—o 9

I o), AyeRt (5.2)
77411

where H" is the hypergeometric Fourier transform given by (3.8).
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5.1. Plancherel formula for the Cherednik windowed transform
in the W-invariant case.

THEOREM 5.1. For all s €] — c0,0[ and f € L% (R")", we have for
the transform ®; the following Plancherel formula

[, [ #00anPac (v =11 B,

. TV .. 00
Proof. For all y € R? the function % is in L% (R)™ and

as f is in L% (R?), then the function 2 — f(x)ﬁ% belongs to
z 52
L2 (RHYW. Thus, from (5.2) we deduce that

/Rd(/Rd D5 (F) N y)[PC (N)dN) Aw(y)dy

_ w 7," (9) 2,V
= L P e P 0N Aty

From Theorem 3.2 and Fubini-Tonnelli’s theorem we obtain

[ 5o rer iy

|f(z)[” W o(2)|2 2)dr
TR e s A ) At

B @)
- / T O

= 11f1Re..

O

5.2. Inversion formula for the Cherednik windowed transform
in the W-invariant case.

THEOREM 5.2. For all s €] — 00,0[, the transform ®; admits the

following inversion formula. Let B(0,n) be the closed ball of center 0
and radius n € N\{0}.
Then we have

fer=tm_ [ ([ (DO @A) dn)Cl (i, ac € B
=+ JB(0,n) JRE (53
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with

7, g(x)
~2—5 Y
g z(x) = F)\(’Z> —s5
o 1TV 9ll%,
This formula is true for the functions f of the space (LY, N L% )(RH)W.

Proof. For all function f in (LY, NL% )(R)". We have from Fubini-
Tonnelli’s theorem

L 00 0 Aty = B R (D)
Then from Theorem 3.3 we obtain

lim ([ 5(DOF %0 A)dg)Cl () = F(2), ae o € R
n—=+00 JB(0,n) JRI
O

THEOREM 5.3. For all s €] —o0,0[. We suppose that the function g is
in So(RHW. Then for all f in Sy(RY)W, we have the following inversion
formula

Vo e R f(z) = /R [ /R BT () Ayl (V). (5.4)

Proof. We deduce the relation (5.4) from (5.3) and Remark 3.3. O

6. The Gaussian Cherednik windowed transform in the W-
invariant case

DEFINITION 6.1. The Gaussian Cherednik windowed transform QZT,
s €] — 00, 0],
T €]0, 4o00], associated to the Cherednik operators, is defined for a reg-
ular W-invariant function f by

2 (DY) = | F@)CF, (@) Axle)da. (6.1)

where G‘;z is the Gaussian Cherednik wavelet given by

n (EF)(VTy)
17 (B, 2

G33(r) = Fafa)
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As from the relation (3.33) we have

G35 (a) = Pos(a) LAY

: (6.2)
|p7 (=2, )12, 2

REMARK 6.1. By using the relation (6.2) the relation (6.1) can also
be written in the following form

7 (=€ I,

where H" is the hypergeometric Fourier transform given by (3.8).

ox"(H(\y) =HY (7. )(A), Ay eR? (6.3)

Then by applying the results of the previous sections we obtain for
the transform ®%", s €] — 00,0[, T €]0, 00|, the following Plancherel
and inversion formulas.

6.1. Plancherel formula for the Gaussian Cherednik windowed
transform. Notation. We denote by N7 (R)W, s €] —00,0[, T €
]0, +00[, the space of measurable functions f on R? which are W-
invariant and satisfying

2 ( )dx
f 2 f T < +00.
1133, = [ o) oy <

THEOREM 6.1. For all f in L%, (R")", we have for the transform 5"
the following
Plancherel formula

L, L2 (0P Ane Wduar = 1f iz - (63)

Proof. From Corollary 3.3 and relation (3.33), for all y € R? the

function M is in L% (R)™W. Then we obtain the result by
T \T% )4, 2
using the same progf as of Theorem 5.1. O

6.2. Inversion formula for the Gaussian Cherednik windowed
transform.
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THEOREM 6.2. The transform (IDS@T admits the following inversion
formula. Let B(0,n) be the closed ball of center 0 and radius n € N\{0}.
Then we have

fe) = dim_ [ ot 2 (N0 @A (N, aca € R

n—-+00
(6.4)
with
GQ—S,T(:E) — A\(2) pqu(_% \/Ty)

s IP7 (=2, %>

This formula is true for the functions f of the space (LY, N L% )(RH)™.

Proof. We obtain the result by making the same proof as for Theorem
5.2. OJ
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