DOI QR코드

DOI QR Code

Application of microwave water surface current meter for measuring agricultural water intake

농업용수 사용량 계측을 위한 전자파 표면유속계의 적용

  • Baek, Jongseok (Hydrological Survey Department, Korea Institute of Hydrological Survey) ;
  • Kim, Chiyoung (Hydrological Survey Department, Korea Institute of Hydrological Survey) ;
  • Lee, Kisung (Department of Civil Engineering, Inha University) ;
  • Kang, Hyunwoong (Hydrological Survey Department, Korea Institute of Hydrological Survey) ;
  • Song, Jaehyun (Department of Civil Engineering, Inha University)
  • 백종석 (한국수자원조사기술원 하천조사실) ;
  • 김치영 (한국수자원조사기술원 하천조사실) ;
  • 이기성 (인하대학교 토목공학과) ;
  • 강현웅 (한국수자원조사기술원 하천조사실) ;
  • 송재현 (인하대학교 토목공학과)
  • Received : 2020.08.28
  • Accepted : 2020.10.19
  • Published : 2020.12.31

Abstract

For integrated water management, it is essential to secure basic data such as the amount of agricultural water intake. The river water intake through the intake weir is carried out through the agricultural irrigation canal, and a method for measuring the quantity of water intake is required to suit the characteristics of the measuring points. In this study, the accuracy of the calculated flow data was determined by applying a microwave water surface current meter. The microwave water surface current meter is a method of calculating surface velocity using doppler effect, which is mainly used in high-velocities situations such as flood. Surface velocity is difficult to represent the average velocity of the entire section at low dicharges or high wind speeds, it is considered to be low in continuous utilization throughout the year, and it is necessary to verify whether the measurement using an microwave water surface curren meter is appropriate in agricultural irrigation canal. The data measured with an microwave water surface curren meter were compared with the actual flow data to calculate the intake data in agricultural irrigation canal. In agricultural irrigation canal, the low-level discharge calculated using an microwave water surface current meter at a minimum velocity of about 0.3 m/s and a minimum discharge of about 1.0 m3/s or higher was found to have a high tendency and accuracy compared to the standard discharge, especially when the high discharge was high. Although effective results can be obtained in terms of quantity at low discharge, it is deemed that subsequent studies are needed to calculate the average discharge of the cross section at low discharge, given that the trend of data is unstable. Through this study, it is suggested that it is appropriate to calculate the amount of water intake through the microwave water surface current meter in artificial waterways with a certain discharge or higher, so it is expected to be widely distributed as a method for measuring river water intake.

하천수의 통합적인 물관리를 위해서는 농업용수의 목적으로 취수되는 하천수량과 같은 기초자료의 확보가 필수적이다. 취입보를 통해 취수되는 하천수는 농업용수로를 통해 도수되는데, 계측지점의 특성에 맞는 취수량 계측방법이 필요하다. 본 연구에서는 만경강 유역 어우보의 농업용수로 도플러 효과를 이용해 표면유속을 산정하는 전자파 표면유속계를 적용하였는데, 주로 홍수기와 같이 고유량 상황에서 사용되고 있다. 저유량이나 고풍속에서는 표면유속이 단면 전체의 평균유속을 대변하기 어렵기 때문에 연중 지속적인 활용도가 낮다고 평가받고 있어, 농업용수로에서 전자파 표면유속계를 이용한 계측이 적합한지에 대한 검증이 필요한 상황이다. 전자파 표면유속계로 계측한 자료를 실측 유량자료와의 비교를 통해 농업용수로에서의 취수량 자료를 산정하였다. 농업용수로에서 최저유속 약 0.3 m/s, 최저유량 약 1.0 m3/s 이상시 전자파 표면유속계를 이용해 산정되는 일단위 유량은 기준유량 대비 경향성과 정확도가 높은 편인 것으로 확인되었고, 특히, 고유량일때 정확도가 높은 것으로 나타났다. 저유량에서는 양적인 측면에서는 유효한 결과를 얻을 수 있으나, 자료의 경향성이 불안정한 것으로 미루어 저유량시 표면유속으로 단면의 평균유속으로 산정하는 것에는 후속적인 연구가 필요할 것으로 판단한다. 본 연구를 통해 일정 유속 이상의 인공수로에서는 전자파 표면유속계를 통해 취수량을 산정하는 것이 적정한 것으로 사료되어 하천수 사용량 계측의 방안으로서 널리 보급되길 기대한다.

Keywords

References

  1. Baek, J.S., Kim, C.Y., Cha, J.H., and Song, J.H. (2019). "A study on the applicability of power usage method for the analysis of river water intake." Journal of Korea Water Resources Association, KWRA, Vol. 52, No. 12, pp. 975-984. https://doi.org/10.3741/JKWRA.2019.52.12.975
  2. Baek, J.S., Kim, C.Y., Cha, J.H., and Song, J.H. (2020). "A study on the estimation of river water intake using the operating time of the pumping station." Journal of Korea Water Resources Association, KWRA, Vol. 53, No. 2, pp. 89-96. https://doi.org/10.3741/JKWRA.2020.53.2.89
  3. Cha, J.H., Kim, C.W., and Cho, Y.S. (2014). "Development and application of isovel distribution in velocity profile method using poisson equation." Journal of Korean Society of Hazard Mitigation, KOSHAM, Vol. 14, No. 6, pp. 325-336. https://doi.org/10.9798/KOSHAM.2014.14.6.325
  4. Kim, Y.S., Noh, J.W., and Choi, G.S. (2014). "Development of microwave water surface current meter for general use to increase efficiency of measurements of river discharges." Korean Journal of Ecology and Environment, KJEE, Vol. 47, No. 3, pp. 225-231. https://doi.org/10.11614/KSL.2014.47.3.225
  5. Kim, Y.S., Won, N.I., Noh, J.W., and Park, W.C. (2015). "Development of high-performance microwave water surface current meter for general use to extend the applicable velocity range of microwave water surface current meter on river discharge measurements." Journal of Korea Water Resources Association, KWRA, Vol. 48, No. 8, pp. 613-623. https://doi.org/10.3741/JKWRA.2015.48.8.613
  6. Lee, S.H., Kim. W.G., and Kim. Y.S. (1997). "Practical aspects of microwave surface velocity meter applied to measurements of stream discharges." Journal of Korea Water Resources Association, KWRA, Vol. 30, No. 6, pp. 671-678.
  7. Song, J.H., Park, M.H., Cha, J.H., and Kim, C.Y. (2019). "Applicability evaluation of velocity profile method by V-ADCP measuring real-time river water use." Journal of Korea Water Resources Association, KWRA, Vol. 52, No. 1, pp. 83-96.
  8. United States Geological Survey (USGS) (2012). Computing discharge using the index velocity method, Reston, VA, U.S., pp. 35-59.