참고문헌
- Matsumura Y, Ananthaswamy HN. Toxic effects of ultraviolet radiation on the skin. Toxicol Appl Pharmacol 2004;195:298-308. doi: 10.1016/j.taap.2003.08.019.
- Melnikova VO, Ananthaswamy HN. Cellular and molecular events leading to the development of skin cancer. Mutat Res 2005;571:91-106. doi: 10.1016/j.mrfmmm.2004.11.015.
- Masuma R, Kashima S, Kurasaki M, Okuno T. Effects of UV wavelength on cell damages caused by UV irradiation in PC12 cells. J Photochem Photobiol B 2013;125:202-8. doi: 10.1016/j.jphotobiol.2013.06.003.
- Jiang W, Ananthaswamy HN, Muller HK, Kripke ML. p53 protects against skin cancer induction by UV-B radiation. Oncogene 1999;18:4247-53. doi: 10.1038/sj.onc.1202789.
- Subrahmanyam K, Rao KS. Ultraviolet light-induced unscheduled DNA-synthesis in isolated neurons of rat brain of different ages. Mech Ageing Dev 1991;57:283-91. doi: 10.1016/0047-6374(91)90053-3.
- Griffiths HR, Mistry P, Herbert KE, Lunec J. Molecular and cellular effects of ultraviolet light-induced genotoxicity. Crit Rev Clin Lab Sci 1998;35:189-237. doi: 10.1080/10408369891234192.
- Kulms D, Schwarz T. Molecular mechanisms of UV-induced apoptosis. Photodermatol Photoimmunol Photomed 2000;16:195-201. doi: 10.1034/j.1600-0781.2000.160501.x.
- Kulms D, Schwarz T. Molecular mechanisms involved in UV-induced apoptotic cell death. Skin Pharmacol Appl Skin Physiol 2002;15:342-7. doi: 10.1159/000064539.
- McCollum AT, Nasr P, Estus S. Calpain activates caspase-3 during UV-induced neuronal death but only calpain is necessary for death. J Neurochem 2002;82:1208-20. doi: 10.1046/j.1471-4159.2002.01057.x.
- McCollum AT, Estus S. NGF acts via p75 low-affinity neurotrophin receptor and calpain inhibition to reduce UV neurotoxicity. J Neurosci Res 2004;77:552-64. doi: 10.1002/jnr.20184.
- Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-12. doi: 10.1126/science.281.5381.1309.
- Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770-6. doi: 10.1038/35037710.
- Cohen GM. Caspases: the executioners of apoptosis. Biochem J 1997;326(Pt 1):1-16. doi: 10.1042/bj3260001.
- Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 1999;274:20049-52. doi: 10.1074/jbc.274.29.20049.
- Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 1997;3:614-20. doi: 10.1038/nm0697-614.
- Reed JC. Double identity for proteins of the Bcl-2 family. Nature 1997;387:773-6. doi: 10.1038/42867.
- Landis-Piwowar KR, Huo C, Chen D, Milacic V, Shi G, Chan TH, Dou QP. A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res 2007;67:4303-10. doi: 10.1158/0008-5472.CAN-06-4699.
- Rashidi B, Malekzadeh M, Goodarzi M, Masoudifar A, Mirzaei H. Green tea and its anti-angiogenesis effects. Biomed Pharmacother 2017;89:949-56. doi: 10.1016/j.biopha.2017.01.161.
- Gao X, Lin X, Li X, Zhang Y, Chen Z, Li B. Cellular antioxidant, methylglyoxal trapping, and anti-inflammatory activities of cocoa tea (Camellia ptilophylla Chang). Food Funct 2017;8:2836-46. doi: 10.1039/c7fo00368d.
- Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011;82:1807-21. doi: 10.1016/j.bcp.2011.07.093.
- Eng QY, Thanikachalam PV, Ramamurthy S. Molecular understanding of Epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. J Ethnopharmacol 2018;210:296-310. doi: 10.1016/j.jep.2017.08.035.
- Steinmann J, Buer J, Pietschmann T, Steinmann E. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol 2013;168:1059-73. doi: 10.1111/bph.12009.
- Itoh T, Imano M, Nishida S, Tsubaki M, Hashimoto S, Ito A, Satou T. (-)-Epigallocatechin-3-gallate protects against neuronal cell death and improves cerebral function after traumatic brain injury in rats. Neuromolecular Med 2011;13:300-9. doi: 10.1007/s12017-011-8162-x.
- Singh NA, Mandal AK, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2016; 15:60. doi: 10.1186/s12937-016-0179-4.
- Mandel S, Weinreb O, Amit T, Youdim MB. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 2004;88:1555-69. doi: 10.1046/j.1471-4159.2003.02291.x.
- Abu-Raya S, Blaugrund E, Trembovler V, Lazarovici P. Rasagiline, a novel monoamine oxidase-B inhibitor with neuroprotective effects under ischemic conditions in PC12 cells. Drug Dev Res 2000;50:285-90. doi: 10.1002/1098-2299(200007/08)50:3/4<285::AID-DDR11>3.0.CO;2-8.
- Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 1976;73:2424-8. doi: 10.1073/pnas.73.7.2424.
- Salakou S, Kardamakis D, Tsamandas AC, Zolota V, Apostolakis E, Tzelepi V, Papathanasopoulos P, Bonikos DS, Papapetropoulos T, Petsas T, Dougenis D. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo 2007;21:123-32.
- Friedlander RM. Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 2003;348:1365-75. doi: 10.1056/NEJMra022366.
- McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 2015;7:a026716. doi: 10.1101/cshperspect.a026716.
- Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S, Smulson M. Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 1999;274:22932-40. doi: 10.1074/jbc.274.33.22932.
- Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002;12:9-18. doi: 10.1038/sj.cr.7290105.
- Valencia A, Moran J. Reactive oxygen species induce different cell death mechanisms in cultured neurons. Free Radic Biol Med 2004;36:1112-25. doi: 10.1016/j.freeradbiomed.2004.02.013.
- Levites Y, Amit T, Youdim MB, Mandel S. Involvement of protein kinase C activation and cell survival/ cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 2002;277:30574-80. doi: 10.1074/jbc.M202832200.
- Weinreb O, Mandel S, Amit T, Youdim MB. Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. J Nutr Biochem 2004;15:506-16. doi: 10.1016/j.jnutbio.2004.05.002.
- Seong KJ, Lee HG, Kook MS, Ko HM, Jung JY, Kim WJ. Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice. Korean J Physiol Pharmacol 2016;20:41-51. doi: 10.4196/kjpp.2016.20.1.41.
- de Jager TL, Cockrell AE, Du Plessis SS. Ultraviolet light induced generation of reactive oxygen species. Adv Exp Med Biol 2017;996:15-23. doi: 10.1007/978-3-319-56017-5_2.
- Basu A, Sanchez K, Leyva MJ, Wu M, Betts NM, Aston CE, Lyons TJ. Green tea supplementation affects body weight, lipids, and lipid peroxidation in obese subjects with metabolic syndrome. J Am Coll Nutr 2010;29:31-40. doi: 10.1080/07315724.2010.10719814.
- Katiyar SK, Afaq F, Perez A, Mukhtar H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 2001;22:287-94. doi: 10.1093/carcin/22.2.287.
- Yan J, Zhao Y, Suo S, Liu Y, Zhao B. Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress. Free Radic Biol Med 2012;52:1648-57. doi: 10.1016/j.freeradbiomed.2012.01.033.
- He Y, Tan D, Mi Y, Bai B, Jiang D, Zhou X, Ji S. Effect of epigallocatechin-3-gallate on acrylamide-induced oxidative stress and apoptosis in PC12 cells. Hum Exp Toxicol 2017;36:1087-99. doi: 10.1177/0960327116681648.
- Ye Q, Ye L, Xu X, Huang B, Zhang X, Zhu Y, Chen X. Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway. BMC Complement Altern Med 2012;12:82. doi: 10.1186/1472-6882-12-82.
- Rolland SG, Conradt B. New role of the BCL2 family of proteins in the regulation of mitochondrial dynamics. Curr Opin Cell Biol 2010;22:852-8. doi: 10.1016/j.ceb.2010.07.014.
- Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVDspecific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 1998;17:37-49. doi: 10.1093/emboj/17.1.37.
- Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479-89. doi: 10.1016/s0092-8674(00)80434-1.
- Fan TJ, Han LH, Cong RS, Liang J. Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 2005;37:719-27. doi: 10.1111/j.1745-7270.2005.00108.x.