DOI QR코드

DOI QR Code

Production of virus-like particles of nervous necrosis virus displaying partial VHSV's glycoprotein at surface and encapsulating DNA vaccine plasmids

  • Yang, Jeong In (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Bessaid, Mariem (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Ki Hong (Department of Aquatic Life Medicine, Pukyong National University)
  • 투고 : 2020.09.07
  • 심사 : 2020.12.01
  • 발행 : 2020.12.31

초록

In order to use nervous necrosis virus (NNV) virus-like particles (VLPs) as a delivery tool for heterologous antigens or plasmids, we attempted to produce red-spotted grouper nervous necrosis virus (RGNNV) VLPs displaying a partial region of viral hemorrhagic septicemia virus (VHSV) glycoprotein at the surface and VLPs that are harboring DNA vaccine plasmids within the VLP. A peptide encoding 105 amino acids of VHSV glycoprotein was genetically inserted in the loop region of NNV capsid gene, and VLPs expressing the partial part of VHSV glycoprotein were successfully produced. However, in the transmission electron microscope analysis, the shape and size of the partial VHSV glycoprotein-expressing NNV VLPs were irregular and variable, respectively, indicating that the normal assembly of capsid proteins was inhibited by the relatively long foreign peptide (105 aa) on the loop region. To encapsulate by simultaneous transformation with both NNV capsid gene expressing plasmids and DNA vaccine plasmids (having an eGFP expressing cassette under the CMV promoter), NNV VLPs containing plasmids were produced. The encapsulation of plasmids in the NNV VLPs was demonstrated by PCR and cells exposed to the VLPs encapsulating DNA vaccine plasmids showed fluorescence. These results suggest that the encapsulation of plasmids in NNV VLPs can be done with a simple one-step process, excluding the process of disassembly-reassembly of VLPs, and NNV VLPs can be used as a delivery tool for DNA vaccine vectors.

키워드

참고문헌

  1. Chen, N.-C., Yoshimura, M., Guan, H.-H, Wang, T.-Y., Misumi, Y., et al.: Crystal structures of a piscine Betanodavirus: Mechanisms of capsid assembly and viral infection. PLoS. Pathog., 11: e1005203, 2015. https://doi.org/10.1371/journal.ppat.1005203
  2. Crisci, E., Barcena, J. and Montoya, M.: Virus-like particles: the new frontier of vaccines for animal viral infections. Vet. Immunol. Immunopathol., 148: 211-225, 2012. https://doi.org/10.1016/j.vetimm.2012.04.026
  3. Dai, S., Wang, H. and Deng, F.: Advances and challenges in enveloped virus-like particle (VLP)-based vaccines. J. Immunol. Sci., 2: 36-41, 2018. https://doi.org/10.29245/2578-3009/2018/2.1118
  4. Donaldson, B., Al-Barwani, F., Young, V., Scullion, S., Ward, V. and Young, S.: Virus-like particles, a versatile subunit vaccine platform. In: Foged C., Rades T., Perrie Y., Hook S. (eds) Subunit Vaccine Delivery. Advances in Delivery Science and Technology. Springer, New York, NY., 2015.
  5. Donaldson, B., Lateef, Z., Walker, G.F., Young, S.L. and Ward, V.K.: Virus-like particle vaccines: immunology and formulation for clinical translation. Expert. Rev. Vaccines, 17: 833-849, 2018. https://doi.org/10.1080/14760584.2018.1516552
  6. Husgaro, S., Grotmol, S., Hjeltnes, B.K., Rodseth, O.M. and Biering, E.: Immune response to a recombinant capsid protein of striped jack nervous necrosis virus (SJNNV) in turbot Scophthalmus maximus and Atlantic halibut Hippoglossus hippoglossus, and evaluation of a vaccine against SJNNV. Dis. Aquat. Org., 45: 33-44, 2001. https://doi.org/10.3354/dao045033
  7. Jariyapong, P., Chotwiwatthanakun, C., Somrit, M., Jitrapakdee, S., Xing, L., Cheng, H.R. and Weerachatyanukul, W.: Encapsulation and delivery of plasmid DNA by virus-like nanoparticles engineered from Macrobrachium rosenbergii nodavirus. Virus Res., 179: 140-146, 2014. https://doi.org/10.1016/j.virusres.2013.10.021
  8. Jariyapong, P, Chotwiwatthanakun, C., Direkbusarakom, S., Hirono, I. et al.: Delivery of double stranded RNA by Macrobrachium rosenbergii nodavirus-like particles to protect shrimp from white spot syndrome virus. Aquaculture, 435: 86-91, 2015. https://doi.org/10.1016/j.aquaculture.2014.09.034
  9. Jeong, K.H., Kim, H.J. and Kim, H.J.: Current status and future directions of fish vaccines employing virus-like particles. Fish Shellfish Immunol., 100: 49-57, 2020. https://doi.org/10.1016/j.fsi.2020.02.060
  10. Lai, Y.X., Jin, B.L., Xu, Y., Huang, L.J., Huang, R.Q., et al.: Immune responses of orange-spotted grouper, Epinephelus coioides, against virus-like particles of betanodavirus produced in Escherichia coli. Vet. Immunol. Immunopathol., 157: 87-96, 2014. https://doi.org/10.1016/j.vetimm.2013.10.003
  11. Mohsen, M.O., Zha, L., Cabral-Miranda, G. and Bachmann, M.F.: Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin. Immunol., 34: 123-132, 2017. https://doi.org/10.1016/j.smim.2017.08.014
  12. Munday, B.L., Kwang, J. and Moody, N.: Betanodavirus infections of teleost fish: a review. J. Fish Dis., 25: 127-142, 2002. https://doi.org/10.1046/j.1365-2761.2002.00350.x
  13. Murata, K., Lechmann, M., Qiao, M., Gunji, T., Alter, H.J. and Liang, T.J.: Immunization with hepatitis C virus-like particles protects mice from recombinant hepatitis C virus-vaccinia infection. Proc. Natl. Acad. Sci. U. S. A., 100: 6753-6758, 2003. https://doi.org/10.1073/pnas.1131929100
  14. Nakai, T., Mori, K., Sugaya, T., Nishioka, T., Mushiake, K. and Yamashita, H.: Current knowledge on viral nervous necrosis (VNN) and its causative betanodaviruses. Isr. J. Aquacult-Bamid., 61: 198-207, 2009.
  15. Pakingking, R. Jr., Seron, R., dela Pena, L., Mori, K., Yamashita, H. and Nakai, T.: Immune responses of Asian sea bass, Lates calcarifer Bloch, against an inactivated betanodavirus vaccine. J. Fish Dis., 32: 457-463, 2009. https://doi.org/10.1111/j.1365-2761.2009.01040.x
  16. Roldao, A., Mellado, M.C., Castilho, L.R., Carrondo, M. J. and Alves, P.M.: Virus-like particles in vaccine development. Expert Rev. Vaccines, 9: 1149-1176, 2010. https://doi.org/10.1586/erv.10.115
  17. Takamura, S., Niikura, M., Li, T. et al.: DNA vaccineencapsulated virus-like particles derived from an orally transmissible virus stimulate mucosal and systemic immune responses by oral administration. Gene Ther.s 11: 628-635, 2004. https://doi.org/10.1038/sj.gt.3302193
  18. Tang, L., Lin, C.S., Krishna, N.K., Yeager, M., Schneemann, A. and Johnson, J.E.: Virus-like particles of a fish nodavirus display a capsid subunit domain organization different from that of insect nodaviruses. J. Virol., 76: 6370-6375, 2002. https://doi.org/10.1128/JVI.76.12.6370-6375.2002
  19. Thiery, R., Cozien, J., Cabon, J., Lamour, F., Baud, M. and Schneemann, A.: Induction of a protective immune response against viral nervous necrosis in the European sea bass Dicentrarchus labrax by using betanodavirus virus-like particles. J. Virol., 80: 10201-10207, 2006. https://doi.org/10.1128/JVI.01098-06
  20. Xie, J., Li, K., Gao, Y., et al.: Structural analysis and insertion study reveal the ideal sites for surface displaying foreign peptides on a betanodavirus-like particle. Vet. Res., 47: 16, 2016. https://doi.org/10.1186/s13567-015-0294-9
  21. Yamashita, Hm, Mori, Km, Kuroda, A. and Nakai, T.: Neutralizing antibody levels for protection against betanodavirus infection in sevenband grouper, Epinephelus septemfasciatus (Thunberg), immunized with an inactivated virus vaccine. J. Fish Dis., 32: 767-775, 2009. https://doi.org/10.1111/j.1365-2761.2009.01054.x
  22. Yuasa, K., Koesharyani, I., Roza, D., Mori, K., Katata, M. and Nakai, T.: Immune response of humpback grouper, Cromileptes altivelis (Valenciennes) injected with the recombinant coat protein of betanodavirus. J. Fish Dis., 25: 53-56, 2002. https://doi.org/10.1046/j.1365-2761.2002.00325.x