초분광영상을 활용한 농업용 담수호 수질 예측 연구 소개

  • 장원진 (건국대학교 사회환경플랜트공학과) ;
  • 김진욱 (건국대학교 사회환경플랜트공학과) ;
  • 김진휘 (건국대학교 사회환경플랜트공학과) ;
  • 박용은 (건국대학교 사회환경공학부) ;
  • 김성준 (건국대학교 사회환경공학부)
  • Published : 2020.11.25

Abstract

Keywords

Acknowledgement

본 연구는 농림축산식품부의 재원으로 농림식품기술기획평가원의 농업기반및재해대응기술 개발사업의 지원을 받아 연구되었음(320049-5).

References

  1. Alcantara, E., Bernardo, N., Watanabe, F., Rodrigues, T., Rotta, L., Carmo, A., Shimabukuro, M., Gonvalves, S., and Imai, N. 2016. Estimating the CDOM absorption coefficient in tropical inland waters using OLI/Landsat-8 images, Remote Sensing Letters. Vol. 7, No. 7, pp.661-670. https://doi.org/10.1080/2150704X.2016.1177242
  2. Ammenberg, P., Flink, P., Lindell, T., Pierson, D., and Strombeck, N. 2002. Bio-optical modelling combined with remote sensing to assess water quality. International Journal of Remote sensing. Vol. 23, pp. 1621-1638. https://doi.org/10.1080/01431160110071860
  3. Ann, C.y., Joung, S.H., Yoon, S.K., and Oh, H.M., 2007. Alternative alert system for cyanobacterial bloom, using phycocyanin as a level determinant, J. Microbiol., Vol.45, No.2, pp.98-104.
  4. Brezonik, P.L., Olmanson, L.G., Finlay, J., and Bauer, M.E. 2015. Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters. Remote Sensing of Environment. Vol.157, pp.199-215. https://doi.org/10.1016/j.rse.2014.04.033
  5. Castillo, C.E., Coble, P.G., Morell, J.M., Lopez, J.M., and Corredor, J.E. 1999. Analysis of the optical properties of the Orinoco river plume by absorption and fluorescence spectroscopy. Marine Chemistry. Vol.66, No.1-2, pp.35-51. https://doi.org/10.1016/S0304-4203(99)00023-7
  6. Griffin, C.G., Frey, K.E., Rogan, J., and Homes, R.M. 2011. Spatial and interannual variability of dissolved organic matter in the Kolyma River, East Siberia, observed using satellite imagery. J. Geophys. Res. Vol.116, G03018. https://doi.org/10.1029/2010jg001634
  7. Kallio, K., Attila, J., Harma, P., Koponen, S., Pulliainen, J., Hyytiainen, U.M. and Pyhalahti, T. 2008. Landsat ETM images in the estimation of seasonal lake water quality in boreal river basins. Environmental Management. Vol. 42, pp.511-522. https://doi.org/10.1007/s00267-008-9146-y
  8. Kallio, K., Kutser, T., Hannonen, T., Koponen, S., Pulliainen, J., Vepsalainen, J., and Pyhalahti, T. 2001. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci, Total Environ. Vol.268, pp.59-77. https://doi.org/10.1016/S0048-9697(00)00685-9
  9. Kutser, T., Paavel, B., Verpoorter, C., Kauer, T., and Vahtmae, E. 2012. Remote sensing of water quality in optically complex lakes. In Proceedings of the XXII Congress of the International Society for Photogrammetry and Remote Sensing. Melbourne, Australia.
  10. Kutser, T., Pierson, D.C., Kallio, K.Y., Reinart, A. and Sobek, S. 2005. Mapping lake CDOM by satellite remote sensing. Remote Sensing of Environment, 94: 535-540. https://doi.org/10.1016/j.rse.2004.11.009
  11. Mannino, A., Novak, M.G., Hooker, S.B., Hyde, K., and Aurin, D. 2014. Algorithm development and validation of cdom properties for estuarine and continental shelf waters along the northeastern U.S. Coast. Remote Sensing of Environment. Vol.152, No.3, pp.576-602. https://doi.org/10.1016/j.rse.2014.06.027
  12. Matthews, M.W. 2011. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. International Journal of Remote Sensing. Vol.32, No.21, pp.6855-6899. https://doi.org/10.1080/01431161.2010.512947
  13. Menken, K.D., Brezonik, P.L., and Bauer, M.E. 2006. Influence of chlorophyll and colored dissolved organic matter (CDOM) on lake reflectance spectra: Implications for measuring lake properties by remote sensing. Lake Reserv. Manag. Vol.22, pp.179-190. https://doi.org/10.1080/07438140609353895
  14. Ogashawara, I., Mishra, D.R., Mishra, S., Curtarelli, M.P., and Stech, J.L., 2013. A performance review of reflectance based algorithms for predicting phycocyanin concentrations in inland waters. Remote Sensing, Vol.5, No.10, pp.4774-4798. https://doi.org/10.3390/rs5104774
  15. Papoutsa, C., Retalis, A., Toulios, L., and Hadjimitsis, D.G., 2014. Defining the Landsat TM/ETM+ and CHRIS/PROBA spectral regions in which turbidity can be retrieved in inland waterbodies using field spectroscopy. International Journal of Remote Sensing, Vol.35, No.5, pp.1674-1692. https://doi.org/10.1080/01431161.2014.882029
  16. Seidel, M., Hutengs, C., Oertel, F., Schwefel, D., Jung, A., and Vohland, M. 2020. Underwater Use of a Hyperspectral Camera to Estimate Optically Active Substances in the Water Column of Freshwater Lakes. Remote Sensing. Vol.12, No.11, pp.1745. https://doi.org/10.3390/rs12111745
  17. Stedmon, C.A. Amon, R.M.W., Rinehart, A.J., and Walker, S.A. 2011. The supply and characteristics of colored dissolved organic matter (CDOM) in the Arctic Ocean: Pan Arctic trends and differences. Marine Chemistry. Vol.124, No. 1-4, pp.108-118. https://doi.org/10.1016/j.marchem.2010.12.007
  18. Sun, D.Y., Li, Y.M., Wang, Q., Lu, H., Le, C.F., Huang, C.C., and Gong, S.Q. 2011. A neural-network model to retrieve CDOM absorption from in situ measured hyperspectral data in an optically complex lake: Lake Taihu case study. International Journal of Remote Sensing. Vol.32, No.14, pp.4005-4022. https://doi.org/10.1080/01431161.2010.481297
  19. Wang, F., Han, L., Kung, H.T., and Van Arsdale, R.B., 2006. Applications of Landsat-5 TM imagery in assessing and mapping water quality in Reelfoot Lake, Tennessee. International Journal of Remote Sensing, Vol.27, No.23, pp.5269-5283. https://doi.org/10.1080/01431160500191704
  20. Zhu, W., Yu, Q., Tian, Y., Becker, B.L., Zheng, T., and Carrick, H.J. 2014. An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments. Remote Sensing of Environment. Vol.140, pp.766-778. https://doi.org/10.1016/j.rse.2013.10.015