DOI QR코드

DOI QR Code

Improved of Mechanical Properties and Functionalization of Polycarbonate by Adding Carbon Materials

탄소재료 첨가에 의한 Polycarbonate의 기계적 물성 향상 및 기능화에 관한 연구

  • Kim, Jeong-Keun (Graduate School of Carbon Fusion Engineering, JEONJU UNIV.) ;
  • Choi, Sun-Ho (Graduate School of Carbon Fusion Engineering, JEONJU UNIV.) ;
  • Go, Sun-Ho (Graduate School of Mechanical Engineering, JEONJU UNIV.) ;
  • Kwac, Lee-Ku (Department of Mechanical and Automotive Engineering, JEONJU UNIV.) ;
  • Kang, Sung-Soo (Department of Mechanical and Automotive Engineering, JEONJU UNIV.)
  • 김정근 (전주대학교 탄소융합공학과) ;
  • 최선호 (전주대학교 탄소융합공학과) ;
  • 고선호 (전주대학교 기계공학과) ;
  • 곽이구 (전주대학교 기계자동차공학과) ;
  • 강성수 (전주대학교 기계자동차공학과)
  • Received : 2020.07.08
  • Accepted : 2020.07.22
  • Published : 2020.10.31

Abstract

Polycarbonate thermoplastic composite materials are anisotropic and exhibit physical properties in the longitudinal direction. Therefore, the physical properties depend on the type and direction of reinforcements. The thermal conductivity, electrical conductivity, and resin impregnation can be controlled by adding carbon nanotubes to polycarbonate resin. However, the carbon fiber used as a reinforcing material is expensive, interfacial adhesion issues occur, and simulation values are different from actual values, making it difficult to perform mathematical analysis. However, carbon nanotubes have advantages such as light weight, rigidity, impact resistance, and reduced number of parts compared to metals. Due to these advantages, it has been applied to various products to reduce weight, improve corrosion resistance, and increase impact durability. As the content of carbon nanotubes or carbon fibers increases, the mechanical properties and antistatic and electromagnetic shielding performance improve. It is expected that the amount of carbon nanotubes or carbon fibers can be optimized and applied to various industrial products.

Keywords

References

  1. Gates, T. S., Sun, C. T., "Elastic/Viscoplastic Constitutive Model for Fiber Reinforced Thermoplastic Composites", AIAA journal, Vol. 29, No. 3, pp. 457-463, 1991. https://doi.org/10.2514/3.59922
  2. Sen, F., Madakbas, S., Basturk, E., & Kahraman, M. V., "Morphology and Mechanical Properties of Thermoplastic Polyurethane/Colemanite Composites", Polymer(Korea), Vol. 41, No. 6, pp. 1019-1026, 2017. https://doi.org/10.7317/pk.2017.41.6.1019
  3. Shin, K. M., Sim, C. U., Lee, J. S., Kim, Y. C., "Effects of the Carbon Fillers on the EMI Shielding Performance and Physical Properties of Nylon66 Composites", Polymer(Korea), Vol. 41, No. 3, pp. 524-530, 2017. https://doi.org/10.7317/pk.2017.41.3.524
  4. Lee, Y. S., Song, S. A., Kim, W. J., Kim, S. S., Jung, Y. S., "Fabrication and Characterization of the Carbon Fiber Composite Sheets", Composite Research, Vol. 28, No. 4, pp. 168-175, 2015. https://doi.org/10.7234/composres.2015.28.4.168
  5. Munalli, D., Dimitrakis, G., Chronopoulos, D., Greedy, S., & Long, A., "Electromagnetic shielding effectiveness of carbon fibre reinforced composites", Journal of Composites Part B: Engineering, Vol. 173, 2019.
  6. Park, I. K., Hau, N. C., Kim, Y. J., Yun, J. H., Kim, S. H., Suhr, J. H., Lee, Y. K., Nam, J. D., "A Study of PP/Natural Fiber Composites Using Thermoplastic Lignin-polyester and Nanoclay", Polymer(Korea), Vol. 40, No. 5, pp. 744-750, 2016. https://doi.org/10.7317/pk.2016.40.5.744
  7. Xi, X., Zhen, W., Bian, S., & Wang, W., "Enhancement of Mechanical and Antimicrobial Properties of Thermoplastic Poly(lactic acid)/Quaternized Chitosan-Saponite Nanocomposites", Polymer(Korea), Vol. 39, No. 4, pp. 601-610, 2015. https://doi.org/10.7317/pk.2015.39.4.601
  8. Park, M. K., Park, S. W., "A Study on The Properties of The Carbon Long Fiber Reinforced Thermoplastic Composite Material Using LFT-D Method", Journal of the Korea Academia-Industrial cooperation Society, Vol. 17, No. 5, pp. 80-85, 2016. https://doi.org/10.5762/KAIS.2016.17.5.80
  9. Kong, Y. S., Cho, H. Y., "Rear Seat Back Frame Design of Hatch Back Car Applying Continuous Fiber-Reinforced Thermoplastic Composite Material", Transactions of the Korean Society of Mechanical Engineers, Vol. 41, No. 12, pp. 1231-1238, 2017. https://doi.org/10.3795/ksme-a.2017.41.12.1231
  10. Kang, S. H., Oh, J. H., X. Li, Cho, U. R., "Improvement of the Physical Properties of the Thermoplastic Polyurethane Using a Modified Waste Tire Powder", Polymer(Korea), Vol. 41, No. 4, pp. 656-661, 2017. https://doi.org/10.7317/pk.2017.41.4.656
  11. Choi, E. Y., Kim, S. W., Lee, J. Y., Ha, J. H., Kim, C. K., "Characteristics of Polyurethane Composites Containing Polyurethane Grafted Multi-walled Carbon Nanotubes", Polymer(Korea), Vol. 41, No. 3, pp. 490-494, 2017. https://doi.org/10.7317/pk.2017.41.3.490
  12. Jeong, E. C., Yoon, J. S., Kim, J. S., Lee, S. H., "A Study on The Production of Carbon Fiber Composites Using Injection-Molding Grade Thermoplastic Pellets", Transactions of Materials Processing, Vol. 25, No. 6, pp. 402-408, 2016. https://doi.org/10.5228/KSTP.2016.25.6.402
  13. Um, C. H., Lee, M. H., Kwak, S. B., Han, I. S., Ko, Y. K., Lee, H. W., Lee, P. C., Ha, J. U., "Study on the Interfacial Strength of Carbon Fiber-Polymer Film Composite by Lap Shear Test Method", Transactions of Materials Processing, Vol. 27, No .6, pp. 455-461, 2019.
  14. Kim, S. H., Um, C. H., Ko, Y. K., Lee, P. C., Park, C. H., Ha, J. U., "Study on the Micro-Bonding Test Droplet Fabrication Method of PP-GF Fiber Reinforced Thermoplastic Composites", Polymer(Korea), Vol.43, No. 1, pp. 132-138, 2019.
  15. Yoon, Y. H., Lim, S. H., Kim, D. H., "Fabricaton of PEMFC separators with conducting polymer composites by injection molding process and evaluation of moldability and electrical conductivity of the separators", Journal of the Korea Academia-Industrial cooperation Society, Vol. 11, No. 4, pp. 1361-1366, 2010. https://doi.org/10.5762/KAIS.2010.11.4.1361