DOI QR코드

DOI QR Code

Double Encoder-Decoder Model for Improving the Accuracy of the Electricity Consumption Prediction in Manufacturing

제조업 전력량 예측 정확성 향상을 위한 Double Encoder-Decoder 모델

  • 조영창 ((주)에스더블유엠 부설연구소) ;
  • 고병길 ((주)에스더블유엠 부설연구소) ;
  • 성종훈 ((주)에스더블유엠 부설연구소) ;
  • 조영식 ((주)AMEP 기술연구소)
  • Received : 2020.08.21
  • Accepted : 2020.10.14
  • Published : 2020.12.31

Abstract

This paper investigated methods to improve the forecasting accuracy of the electricity consumption prediction model. Currently, the demand for electricity has continuously been rising more than ever. Since the industrial sector uses more electricity than any other sectors, the importance of a more precise forecasting model for manufacturing sites has been highlighted to lower the excess energy production. We propose a double encoder-decoder model, which uses two separate encoders and one decoder, in order to adapt both long-term and short-term data for better forecasts. We evaluated our proposed model on our electricity power consumption dataset, which was collected in a manufacturing site of Sehong from January 1st, 2019 to June 30th, 2019 with 1 minute time interval. From the experiment, the double encoder-decoder model marked about 10% reduction in mean absolute error percentage compared to a conventional encoder-decoder model. This result indicates that the proposed model forecasts electricity consumption more accurately on manufacturing sites compared to an encoder-decoder model.

본 연구는 기존 전력량 예측 모델의 구조를 변경하여 모델의 예측 능력을 향상 시킬 수 있는 방법에 관하여 연구하였다. 전기에 대한 수요는 그 어느 때보다 증가하고 있다. 산업 부문에서는 그 어느 부문 보다 전기 소모량이 많음으로, 더욱 정확한 공장 지역의 전력량 소모 예측 모델이 잉여 에너지 생산을 줄이기 위해 주목을 받고 있다. 우리는 2개의 개별 encoder와 한개의 decoder를 사용하여, 장기와 단기 데이터를 모두 사용하는 double encoder-decoder 모델을 제안한다. 우리는 제안된 모델을 세홍(주)의 생산 구역에서 2019년 1월 1일부터 2019년 6월 30일 까지 모집된 전력 소모량 데이터에서 평가 하였다. double encoder-decoder 모델은 기존의 encoder-decoder 모델을 사용했을 때와 비교하여 약 10 %의 평균 절대 비율 오차의 감소를 기록 하였다. 본 결과는 제안한 모델이 encoder-decoder 모델에 비해 생산 지역의 전력 사용량의 예측을 더 정확하게 하는 모델임을 보여준다.

Keywords

References

  1. Y. Cho, Energy info. Korea. Kyonggi-do, Korea: Korea Energy Economics Institute, 2018.
  2. J. Zheng, C. Xu, Z. Zhang, and X. Li, "Electric load forecasting in smart grids using Long-Short-Term-Memory based Recurrent Neural Network," 2017 51st Annual Conference on Information Sciences and Systems (CISS), 2017.
  3. W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, "Short-term residential load forecasting based on LSTM recurrent neural network," IEEE Transactions on Smart Grid, Vol.10, No.1, pp.841-851, 2019. https://doi.org/10.1109/TSG.2017.2753802
  4. J. Bedi and D. Toshniwal, "Deep learning framework to forecast electricity demand," Applied Energy, Vol.238, pp. 1312-1326, 2019. https://doi.org/10.1016/j.apenergy.2019.01.113
  5. R. K. Agrawal, F. Muchahary, and M. M. Tripathi, "Long term load forecasting with hourly predictions based on long-short-term-memory networks," 2018 IEEE Texas Power and Energy Conference (TPEC), 2018.
  6. G. E. P. Box and G. M. Jenkins, Time series analysis: forecasting and control. Oakland: Holden-Day, 1976.
  7. E. Erdogdu, "Electricity demand analysis using cointegration and ARIMA modelling: A case study of Turkey," Energy Policy, Vol.35, No.2, pp.1129-1146, 2007. https://doi.org/10.1016/j.enpol.2006.02.013
  8. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  9. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: Unified, real-time object detection," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  10. G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
  11. Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le, "Sequence to sequence learning with neural networks," In Advances In Neural Information Processing Systems, pp.3104-3112. 2014.
  12. K. Cho, B. V. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-decoder for statistical machine translation," Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.
  13. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge, MA: MIT Press, 2017.
  14. E. E. Elattar, J. Goulermas, and Q. H. Wu, "Electric Load Forecasting Based on Locally Weighted Support Vector Regression," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), Vol.40, No.4, pp.438-447, 2010. https://doi.org/10.1109/TSMCC.2010.2040176
  15. G. Dudek, "Short-Term Load Forecasting Using Random Forests," Advances in Intelligent Systems and Computing Intelligent Systems 2014, pp.821-828, 2015.
  16. T. He, Z. Dong, K. Meng, H. Wang, and Y. Oh, "Accelerating Multi-layer Perceptron based short term demand forecasting using Graphics Processing Units," 2009 Transmission & Distribution Conference & Exposition: Asia and Pacific, 2009.
  17. A. Graves, Supervised sequence labelling with recurrent neural networks. Berlin: Springer, 2012.
  18. Hochreiter, Sepp, and Jurgen Schmidhuber, "Long short-term memory," Neural Computation, Vol.9, No.8, pp.1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
  19. F. Rosenblatt, "The perceptron: A probabilistic model for information storage and organization in the brain," Psychological Review, Vol.65, No.6, pp.386-408, 1958. https://doi.org/10.1037/h0042519
  20. M. Leshno, V. Y. Lin, A. Pinkus, and S. Schocken, "Multilayer feedforward networks with a nonpolynomial activation function can approximate any function," Neural Networks, Vol.6, No.6, pp.861-867, 1993. https://doi.org/10.1016/S0893-6080(05)80131-5
  21. Y. Bengio, A. Courville, and P. Vincent, "Representation Learning: A Review and New Perspectives," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.35, No.8, pp.1798-1828, 2013. https://doi.org/10.1109/TPAMI.2013.50
  22. T. Luong, H. Pham, and C. D. Manning, "Effective Approaches to Attention-based Neural Machine Translation," Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015.
  23. D. Bahdanau, K. Cho, and Y. Bengio, "Neural Machine Translation by Jointly Learning to Align and Translate," International Conference on Learning Representations, 2015.
  24. J. Cheng, L. Dong, and M. Lapata, "Long Short-Term Memory-Networks for Machine Reading," Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016.
  25. A. Parikh, O. Tackstrom, D. Das, and J. Uszkoreit, "A Decomposable Attention Model for Natural Language Inference," Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 2016.
  26. L. Breiman, "Random Forests," Machine learning, Vol.45, No. 1, pp. 5-32, 2001. https://doi.org/10.1023/A:1010933404324
  27. Drucker, Harris, Christopher JC Burges, Linda Kaufman, Alex J. Smola, and Vladimir Vapnik, "Support vector regression machines," In Advances in Neural Information Processing Systems, pp. 155-161. 1997.
  28. El Hihi, Salah, and Yoshua Bengio, "Hierarchical recurrent neural networks for long-term dependencies," In Advances in Neural Information Processing Systems, pp.493-499. 1996.
  29. D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," 3rd International Conference for Learning Representations, 2015.
  30. L. Bottou, "On-line Learning and Stochastic Approximations," On-Line Learning in Neural Networks, pp. 9-42, 1999.
  31. T. Hastie, J. Friedman, and R. Tisbshirani, The Elements of statistical learning: data mining, inference, and prediction. New York: Springer, 2017.
  32. D. Barber, Bayesian reasoning and machine learning. Cambridge: Cambridge University Press, 2018.
  33. S.-Y. Shih, F.-K. Sun, and H.-Y. Lee, "Temporal pattern attention for multivariate time series forecasting," Machine Learning, Vol.108, No.8-9, pp.1421-1441, 2019. https://doi.org/10.1007/s10994-019-05815-0
  34. G. Lai, W.-C. Chang, Y. Yang, and H. Liu, "Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks," The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018.
  35. M. Abadi, "TensorFlow: learning functions at scale," Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming - ICFP 2016, 2016.
  36. Hall, Mark A. "Correlation-based Feature Selection for Machine Learning," PhD diss., The University of Waikato, 1999.
  37. Song, Fengxi, Zhongwei Guo, and Dayong Mei. "Feature selection using principal component analysis," In 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization, Vol.1, pp.27-30. IEEE, 2010.