References
- Y. SAAD, Iterative methods for sparse linear systems. Industrial and Applied Mathematics, 3600 University City Science Center Philadelphia, PA. United States, 2003.
- Y. SAAD, Numerical methods for large eigenvalueproblems. Second edition, 2011.
- N.J. HIGHAM, J-orthogonal matrices: properties and generations. SIAM, Rev. 45(3):504-519, (2003). https://doi.org/10.1137/S0036144502414930
- A. KIHCMAN, Z.A. ZHOUR, The representation and approximation for the weighted Minkowski inverse in Minkowski space. Math. Comput. Modelling, 47(3-4):363-371,(2008). https://doi.org/10.1016/j.mcm.2007.03.031
- B.C. LEVY, A note on the hyperbolic singular value decomposition. Linear Algebra Appl., 277(1-3):135-142, (1998). https://doi.org/10.1016/S0024-3795(98)10055-1
- R. ONN, A.O. STEINHARDT, A. BOJANCZYK, The hyperbolic singular value decomposition and applications. Applied Mathematics and Computing, Trans. 8th Army Conf., Ithaca-NY (USA)(1990), ARO Rep. 91-1, 93-108, (1991).
- V. SEGO, The hyperbolic Schur decomposition, Linear Algebra Appl. Linear Algebra Appl., 440 (2014), 90-110. https://doi.org/10.1016/j.laa.2013.10.037
- K. N. ASIL AND M. G. KAMALVAND, Some hyperbolic iterative methods for linear systems, Journal of Applied Mathematics, vol. 2020, Article ID 9874162, 8 pages, 2020.
- M. G. KAMALVAND AND K. N. ASIL, Indefinite Ruhe's Variant of the Block Lanczos Method for Solving the Systems of Linear Equations, Advances in Mathematical Physics, Volume 2020, Article ID 2439801, 9 pages.
- C. LANCZOS, Solution of systems of linear equations by minimized iteration. J. Res. Nat. Bureau Standards. 49 (1952), 33-53. https://doi.org/10.6028/jres.049.006
- I.GOHBERG, P.LANCASTER, L.RODMAN, Indefinite linear algebra and applications. Birkhauser, 2005.