과제정보
Myungjoo Kang was supported by the National Research Foundation of Korea (2015R1A5A1009350) and the ICT R&D program of MSIT/IITP(No. 1711117093)
참고문헌
- Hoyeon Lee and Taekyoung Kwon. Fingerprint smudge attacks based on fingerprint image reconstruction on smart devices. Journal of the Korea Institute of Information Security & Cryptology, 27(2):233-240, 2017. https://doi.org/10.13089/JKIISC.2017.27.2.233
- Anil K Jain, Karthik Nandakumar, and Arun Ross. 50 years of biometric research: Accomplishments, challenges, and opportunities. Pattern recognition letters, 79:80-105, 2016. https://doi.org/10.1016/j.patrec.2015.12.013
- Chaohong Wu, Zhixin Shi, and Venu Govindaraju. Fingerprint image enhancement method using directional median filter. In Biometric Technology for Human Identification, volume 5404, pages 66-75. International Society for Optics and Photonics, 2004.
- Shlomo Greenberg, Mayer Aladjem, and Daniel Kogan. Fingerprint image enhancement using filtering techniques. Real-Time Imaging, 8(3):227-236, 2002. https://doi.org/10.1006/rtim.2001.0283
- Mark Rahmes, Josef DeVaughn Allen, Abdelmoula Elharti, and Gnana Bhaskar Tenali. Fingerprint reconstruction method using partial differential equation and exemplar-based inpainting methods. In 2007 Biometrics Symposium, pages 1-6. IEEE, 2007.
- Ramakrishna Prabhu, Xiaojing Yu, Zhangyang Wang, Ding Liu, and Anxiao Andrew Jiang. U-finger: Multiscale dilated convolutional network for fingerprint image denoising and inpainting. In Inpainting and Denoising Challenges, pages 45-50. Springer, 2019.
- Sukesh Adiga and Jayanthi Sivaswamy. Fpd-m-net: Fingerprint image denoising and inpainting using m-net based convolutional neural networks. In Inpainting and Denoising Challenges, pages 51-61. Springer, 2019.
- Yao Tang, Fei Gao, Jufu Feng, and Yuhang Liu. Fingernet: An unified deep network for fingerprint minutiae extraction. In 2017 IEEE International Joint Conference on Biometrics (IJCB), pages 108-116. IEEE, 2017.
- Jian Li, Jianjiang Feng, and C-C Jay Kuo. Deep convolutional neural network for latent fingerprint enhancement. Signal Processing: Image Communication, 60:52-63, 2018. https://doi.org/10.1016/j.image.2017.08.010
- Dinh-Luan Nguyen, Kai Cao, and Anil K Jain. Robust minutiae extractor: Integrating deep networks and fingerprint domain knowledge. In 2018 International Conference on Biometrics (ICB), pages 9-16. IEEE, 2018.
- Jan Svoboda, Federico Monti, and Michael M Bronstein. Generative convolutional networks for latent fingerprint reconstruction. In 2017 IEEE International Joint Conference on Biometrics (IJCB), pages 429-436. IEEE, 2017.
- Lin Hong, Yifei Wan, and Anil Jain. Fingerprint image enhancement: algorithm and performance evaluation. IEEE transactions on pattern analysis and machine intelligence, 20(8):777-789, 1998. https://doi.org/10.1109/34.709565
- Sharat Chikkerur, Alexander N Cartwright, and Venu Govindaraju. Fingerprint enhancement using stft analysis. Pattern recognition, 40(1):198-211, 2007. https://doi.org/10.1016/j.patcog.2006.05.036
- Jianjiang Feng, Jie Zhou, and Anil K Jain. Orientation field estimation for latent fingerprint enhancement. IEEE transactions on pattern analysis and machine intelligence, 35(4):925-940, 2012. https://doi.org/10.1109/TPAMI.2012.155
- Raffaele Cappelli, Dario Maio, Alessandra Lumini, and Davide Maltoni. Fingerprint image reconstruction from standard templates. IEEE transactions on pattern analysis and machine intelligence, 29(9):1489-1503, 2007. https://doi.org/10.1109/TPAMI.2007.1087
- Ding Liu, Bihan Wen, Xianming Liu, Zhangyang Wang, and Thomas S Huang. When image denoising meets high-level vision tasks: A deep learning approach. arXiv preprint arXiv:1706.04284, 2017.
- Raghav Mehta and Jayanthi Sivaswamy. M-net: A convolutional neural network for deep brain structure segmentation. In 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pages 437-440. IEEE, 2017.
- Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention, pages 234-241. Springer, 2015.
- Zhi-Feng Pang, Hui-Li Zhang, Shousheng Luo, and Tieyong Zeng. Image denoising based on the adaptive weighted tvp regularization. Signal Processing, 167:107325, 2020. https://doi.org/10.1016/j.sigpro.2019.107325
- Marc-Andre Blais, Andy Couturier, and Moulay A Akhloufi. Deep learning for partial fingerprint inpainting and recognition. In International Conference on Image Analysis and Recognition, pages 223-232. Springer, 2020.
- Tran Minh Quan, David GC Hildebrand, and Won-Ki Jeong. Fusionnet: A deep fully residual convolutional neural network for image segmentation in connectomics. arXiv preprint arXiv:1612.05360, 2016.
- Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image restoration with neural networks. IEEE Transactions on computational imaging, 3(1):47-57, 2016. https://doi.org/10.1109/TCI.2016.2644865
- Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600-612, 2004. https://doi.org/10.1109/TIP.2003.819861
- Steven M Bellovin, Preetam K Dutta, and Nathan Reitinger. Privacy and synthetic datasets. Stan. Tech. L. Rev., 22:1, 2019.