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NOTE ON A CLASS OF INTEGRAL OPERATORS OF
SZEGO TYPE

JONGHO YANG

ABSTRACT. We define new integral operators on the Haydy space
similar to Szegd projection. We consider a relationship between
these Szegd type operators and the partial sum of Taylor series on
the Hardy space.

1. Introduction

Let C™ denote the Euclidean space of complex dimension n. The
inner product on C" is given by

(z,w) = 21W1 + - - + 2,Wh,
where z = (21,...,2,) and w = (w1,...,wy), and the associated norm
is |z] := 1/(z,2). The unit ball in C" is the set
B, ={z€C":|z| <1}
and its boundary is the unit sphere
Sn:={z€C":|z| =1}.

In case n = 1, we denote D in place of Bj.

Let o,, be the normalized surface measure on S,,.

For 0 < p < oo, the Hardy space HP(B,,) is the space of all holomor-
phic function f on B,, for which the “norm”

= o [ 100w aoni@)}”

0<r<1

is finite. As is well-known, the space HP(B,,) equipped with the norm
above is a Banach space for 1 < p < oco. On the other hand, it is a
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complete metric space for 0 < p < 1 with respect to the translation-
invariant metric (f, g) — ||f — gll%»-
For a function f in HP(B,,), it is known that f have a radial limit

function f* almost everywhere on S,,. Here, the radial limit function f*
of f is defined by

£1(¢) += lim £(rQ)

provided that the limit exists for ( € S,,. Moreover the mapping f —
f* is an isometry from HP(B,,) into LP(S,,do,). Consequently, each
HP(B,,) can be identified with a closed subspace of LP(S,,, doy,).

Since H?(B,,) can be identified with a closed subspace of L%(S,,, doy,),
there exists an orthogonal projection from L?(S,,, do,) onto H?(B,,). By
using a reproducing kernel function, which is called the Szego kernel, we
also obtain a function f from its radial limit function f*. More precisely,

(L1) ﬂ@szwwzéan%md%«>

for f € H?(B,). We usually call this integral operator as the Szegd
projection. It is well known that for 1 < p < oo the Szegd projection
maps LP(S,,do,) boundedly onto HP(B,,). For more details, we refer
the classical text books [1, 2, 4].

For a holomorphic function f on B,, with Taylor series
f(Z) = Z CaZa,
(e
we define N-th partial sum of f by

(1.2) Snf(z):= Z Caz®

la|<N

for a positive integer N. In [3], it is known that Sy f converges to f in
HP(B,,) for 1 < p < oc.
In this paper we consider a class of integral operators defined by

03 Tl = [ G2 @) do
. m,N zZ) = T Aom On
n (]‘ - <Z7 <>)
for m = 1,2,...,n and a positive integer N. With this operators we

give a relationship between Sy and T;, n on HP(B,). More precisely
we give the following theorem.
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THEOREM 1.1. Let 1 < p < co and N be a positive integer. For f in
HP(B,,),

f—5Snf= Z Cm,n,NTm,N[f}a

m=1

(m+14+N)p—m

where ¢y, N = =)

We note that the Szego projection T' defined in (1.1) is bounded only
if p > 1. It is known that 7" is an unbounded operator on L!(S,,do,).
For m = n, T, n has a similar growth condition with 7. Thus the range
of p in Theorem 1.1 is restricted.

2. Preliminary results

We use the conventional multi-index notation. For a multi-index
a=(ag,...,ap)
with nonnegative integers «;, the following are common notations;
la == a1 + -+ ap,

al = ol ol
For z € C", the monomial is defined as

«

2% =2t o

n

At first, we show that the Szeg6 type operators Ty, v defined in (1.3)
are actually coefficient multipliers.

ProrosiTiON 2.1. Let m, N be positive integers with 1 < m < n.
For a multi-index «, there exists Ao, = A\o(m,n, N,|a|) such that

T N[CY(2) = Ao 2™,
Proof. From the definition of T}, n, we have

<27 C>m+N Ca

1= () o)

Talc?)e) = | n

for a multi-index «. Note that

(e e B B G T

k=0
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Since the monomials are orthogonal on L%(S,,, do,,); see [2, Proposition
1.4.8], we have T, n[(*](2) = 0if |o] < m+ N. In case of |o| > m+ N,
we have

T [0 (2) = /S 3

(") ot o)
" k=0

<a\—1—N

o] = m — N

)] (50 ¢ o ).

Expanding the term inside the above integral as

(z, 0l =y 'gllzﬁcﬁ,
1Bl=la "

la| =1 — N |of!
<|Oé| —m—N ? z* s |Ca|2 dO'n(C)
la] =1 —=NY (n—Dlaf!
—_ 7
ol —=m—N/)(n—1+|a])!” ’
see [2, Proposition 1.4.9] for the last equality. Putting A\, as

we obtain that

T n[C7](2)

0 if |a|<m+ N

)\a:)\a s 7N7 = —1- n—l)j«o 1
A (TS IS S

we conclude the lemma. O
For the proof of the main Theorem 1.1, we prove the following lemma.

LEMMA 2.2. For a € D and positive integers m and M, we have
M
1 :Z k+m—1 ak+§: (k+M+41)y,_) oM |
(1—a)™ k (m—k)! (1—a)k
k=0 k=1
Here (M) := M(M +1)--- (M +k —1) denotes the usual Pochhammer
symbol for a positive integer k.

Proof. By elementary calculation, we have
1 _i”: k+m—1 ak+(M+1)maM+1/l (UL
(1—a)m _k;fo k (m—1)! o (1 —at)ym+M+1 =7

So we can prove the lemma by showing that

1 a—at)M i m — 1)lgktM-1
(2.1) /O( (a—at) dtzz( (m — Dta™

1 — at)m A+ 2o (M + Di(m — k)1 — a)F’
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If a = 0, it is trivial. Suppose that a # 0, then
1 M
/ (a — at) it
0 (1 _ at)m—i—M—i—l
B 1 /1 1_1—a Mr1—a\™" a(l—a) gt
a(l—a)™ J, 1—at 1—at (1—at)?

1 a
= m/ M1 —2)m L de,
)™ Jo

a(l —a

where we used the change of variables by z = 1—(1—a)/(1—at). Define
a . .
plid)i= [ 1= 2 ds
0
for nonnegative integers ¢ and j. By integration by parts we obtain

o(i,7) = /Oa 211 — 2)dz

1+1 1— jl|e - a ]
=2 T E ( ?) + /z”l(l—z)j1 dz
1+1 =0 t+1Jg
att(1 —a)l j
= +1,7—1
T +Z.+1so(l+ J— 1),
with
a’i+1
i, 0) = .

By solving ¢(i, j) defined inductively, we get
Jtl aith(1 — a)i—k+1j)

w(i,5) = £ (4 (G — R+ 1)

Thus we have
_ 1)!ak+M71

/1 (a — at)M dt—zm: (m
o (1—at)mHMHL T e (M 4 1) (m — k)1 — a)*

3. Proof

Now we prove the Theorem 1.1.
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THEOREM 3.1. Let 1 < p < co and N be a positive integer. For f in
HP(B,,),

f—5Snf= Z Cm,n,NTm,N[f}a

m=1
(Mm414N)pn—m
(n—m)!

Proof. Let f € HP(B,,) with 1 < p < 2, then we have
[
- L% s
10 = [, 7= gy
where f* is a radial limit function of f. So we have
f(Q) = Snfr(¢)
S -
A R A )R

for a positive integer N. Here Sy is N-th partial sum defined in (1.2).
By Lemma 2.2 we have

where ¢y N =

don(C),

N .
) = Snf(z) =3 (“ R ) L 00 = S (@) dl©)

i=0 J

(N + 1)n/ N+1[ px . /1 (1 =)™ dt dow(¢)
—_— — (S .
+ (Tl - 1)| s, <Z, C) (f (C) ( Nf) (C)) 0 (1 _ t(Z, C))N+n+1
Since f* — (Syf)* have polynomials with order of greater than N, the
first term equals to zero by orthogonality. Similarly the integration with
(Snf)* in the second term is also zero. Combining (2.1) in Lemma 2.2,
we get,

f(z) = Snf(z
N+1
]in /n/ N>+n+1 f (C) dt dan(C)
= Za<>N+mf*<o
— <N+ 1)71/ Z N-|- 1)m(n_m)!(1 — <27C>)m dUn(C)
m+N+ n—m Z7CN+kf*<
_w; (n—m))! /Sn <(lz<Z’C>)(k) don ().

Thus we have the relationship between the Szego type operators and the
partial sums of Taylor series as

f - SNf = Z Cm,n,NTm,N[f}a

m=1
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(m+1+N)n7m . D

where ¢y pn N = =)
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