DOI QR코드

DOI QR Code

CHEMICAL HYPERSTRUCTURES FOR STRATOSPHERIC OZONE DEPLETION

  • Received : 2020.07.24
  • Accepted : 2020.10.13
  • Published : 2020.11.15

Abstract

In this paper, we investigate the mathematical structures of chemical reactions for stratospheric ozone depletion.

Keywords

References

  1. R. Al-Jinani, M. Al-Tahan and B. Davvaz, Hypergroups and H_v -groups associated to elements with four oxidation states, Ser. Math. Inform., 34 (2019), no. 4, 689-708.
  2. K. M. Chun, Chemical hyperstructures of chemical reactions for iron and indium, J. Chungcheong Math. Soc., 27 (2014), 319-325. https://doi.org/10.14403/jcms.2014.27.2.319
  3. K. M. Chun, Chemical hyperstructures for Titatium, J. Chungcheong Math. Soc., 30(2017), no. 4, 459-466. https://doi.org/10.14403/jcms.2017.30.4.459
  4. S. C. Chung, Chemical hyperstructures for Vanadium, J. Chungcheong Math. Soc., 27(2014), no. 2, 309-317. https://doi.org/10.14403/jcms.2014.27.2.309
  5. S. C. Chung, Chemical Hyperstructures for ozone depletion, J. Chungcheong Math. Soc., 32 (2019), no. 4, 491-508. https://doi.org/10.14403/JCMS.2019.32.4.491
  6. S. C. Chung, K. M. Chun, N. J. Kim, S. Y. Jeong, H. Sim, J. Lee and H. Maeng, Chemical hyperalgebras for three consecutive oxidation states of elements, MATCH Communications in Mathematical and in Computer Chemistry, 72 (2014), 389-402.
  7. Rolf Muller, Stratospheric Ozone Depletion and Climate Change, The Royal Society of Chemistry, UK, 2012.
  8. P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Tricesimo, Italian, 1993.
  9. P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Springer, 2003.
  10. B. Davvaz, Weak Algebraic Hyperstructures as a Model for Interpretation of Chemical Reactions, Iranian Journal of Mathematical Chemistry, 7 (2016), no. 2, 267-283.
  11. B. Davvaz, A. D. Nezhad, and A. Benvidi, Chemical hyperalgebra: Dismutation reactions, MATCH Communications in Mathematical and in Computer Chemistry, 67 (2012), 55-63.
  12. B. Davvaz, A. D. Nezad, and M. M. Ardakani, Chemical Hyperalgebra: Redox Reactions, MATCH Communications in Mathematical and in Computer Chemistry, 71 (2014), 323-331.
  13. D. Heidari, D. Mazaheri, and B. Davvaz, Chemical Salt Reactions as Algebraic Hyperstructures, Iranian J. Math. Chem., 10 (2019), no. 2, 93-102.
  14. F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm, 1934, 45-49.
  15. P. A. Newman, Stratospheric Ozone, An Electronic Textbook, Chapter 5 Section 2 and Section 4, NASA's Goddard Space Flight Center Atmospheric Chemistry and Dynamics Branch. 2017. (http://www.ccpo.odu.edu/SEES/ozone/oz class.htm)
  16. A. D. Nezhad, S. M. M. Nejad, M. Nadjafikhah, and B. Davvaz, A physical example of algebraic hyperstructures: Leptons, Indian J. Phys., 86 (2012), no. 11, 1027-1032. https://doi.org/10.1007/s12648-012-0151-x
  17. M. Norouzia, A. Mohammadib, and V. Leoreanu-Fotea, Hypergroups Obtained from Formation Reaction of Simple Gas Hydrates, MATCH Commun. Math. Comput. Chem., 80 (2018), 383-392.
  18. M. Al Tahan and B. Davvaz, Algebraic hyperstructures associated to biological inheritance, Mathematical Biosciences., 285 (2017), 112-118. https://doi.org/10.1016/j.mbs.2017.01.002
  19. M. A. Al Tahan and B. Davvaz, Weak Chemical Hyperstructures Associated to Electrochemical Cells, Iranian J. Math. Chem., 9 (2018), no. 1, 65-75.
  20. M. Al Tahan and B. Davvaz, Electrochemical Cells as Experimental Verifications of n-ary Hyperstructures, MATEMATIKA, 35 (2019), no. 1, 13-24. https://doi.org/10.11113/matematika.v35.n1.1062
  21. T. Vougiouklis, Hyperstructures and their representations, Hadronic press, Inc. 1994.