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SYMMETRIES ON TRANS-SASAKIAN SPACE FORMS

Sibsankar Panda*, Arindam Bhattacharya**, and Kalyan
Halder***

Abstract. In this article we have studied different types of sym-
metricness of trans-Sasakian space forms.

1. Introduction

In 1985, J.A. Oubiña [8] introduced a new class of almost contact
manifold namely trans-Sasakian manifold of type (α,β). This class
contains α-Sasakian, β-Kenmotsu and cosymplectic manifolds. In par-
ticular when α = 1 and β = 0 the manifolds are Sasakian manifolds
which are analogues to Kähler manifolds. A Kähler manifold of con-
stant holomorphic curvature is called a complex space form. Sasakian
space forms are analogues to complex space forms. Many geometers
[7, 1] studied the symmetric properties on Sasakian space forms. On the
other hand a class of almost contact Riemannian manifolds abstracted
by Kenmotsu [5] which are normal but not Sasakian are called Kenmotsu
manifolds. β-Kenmotsu manifolds are the generalization of Kenmotsu
manifolds. A Kenmotsu manifold with constant ϕ-holomorphic sectional
curvature is called a Kenmotsu space form. In this article we first
introduced the trans-Sasakian space form, and studied the several in-
teresting symmetric properties as semi-symmetry, Ricci-semi-symmetry,
pseudo-symmetry, Ricci-generalized-pseudo-symmetry, Weyl-projective-
semi-symmetry and pseudo-projective-semi-symmetry on the trans-Sasakian
space form.
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2. Preliminaries

Let M be a (2n+1) dimensional manifold and ϕ, ξ and η be a tensor
field of type (1,1), a vector field, a 1 form on M respectively. If ϕ, ξ
and η satisfy the conditions

(2.1) η(ξ) = 1 and ϕ2X = −X + η(X)ξ

for any vector field X on M , then M is said to have an almost contact
structure (ϕ, ξ, η) and is called an almost contact manifold.

Using equation (2.1), for an almost contact structure (ϕ, ξ, η) one can
prove the following properties:

(i) ϕ(ξ) = 0,
(ii) ηoϕ = 0,
(iii) rankϕ = 2n.

Every almost contact manifold M admits a Riemannian metric tensor
field g such that

(2.2) η(X) = g(X,ξ),

(2.3) g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ).

(2.4) g(ϕX,Y ) = −g(X,ϕY ).

The metric tensor field g called an associated Riemannian metric
tensor field to the given almost contact structure (ϕ, ξ, η). If M admits
the structure (ϕ, ξ, η, g), g being an associated Riemannian metric tensor
field of an almost contact structure (ϕ, ξ, η) then M is said to have an
almost contact metric structure (ϕ, ξ, η, g) and is called an almost
contact metric manifold.

For an (2n + 1) dimensional almost contact manifold M with al-
most contact structure (ϕ, ξ, η), we consider a product manifold M ×R,
where R denotes a real line. Then a vector field on M × R is given by
(X,f(d/dt)), where X is a vector field tangent to M , t the coordinate of
R and f a function on M ×R. We define a linear map J on the tangent
space of M ×R by

(2.5) J(X,f
d

dt
) = (ϕX − fξ, η(X)

d

dt
).

Then we have J2 = −I and hence J is an almost complex structure on
M × R. The almost complex structure J is said to be integrable if its
Nijenhuis torsion N vanishes, where

N(X,Y ) = J2
[X,Y ] + [JX,JY ] − J[JX,Y ] − J[X,JY ].
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If the almost complex structure J on M × R is integrable, we say that
the almost contact structure (ϕ, ξ, η) is normal. A normal almost con-
tact metric manifold is called Sasakian manifold [2]. The sectional
curvature of the plane section spanned by the unit tangent vector field
X orthogonal to ξ and ϕX is called a ϕ-sectional curvature. If M has
a constant ϕ-sectional curvature c, then M is called a Sasakian space
forms.

Let (M,g) be an n dimensional Riemannian manifold n > 2, its cur-
vature tensor defined by

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

Let T be (0, k) tensor, define a (0,2 + k) tensor field R ⋅ T by

(R⋅T )(X1,X2, ...Xk,X,Y ) = R(X,Y )(T (X1,X2, ...Xk))

= −T (R(X,Y )X1,X2, ...Xk)

−T (X1,R(X,Y )X2, ...Xk) − ...

−T (X1,X2, ...,R(X,Y )Xk)

one has

R(X,Y ) ⋅ T = ∇X(∇Y T ) −∇Y (∇XT ) −∇[X,Y ]T.

When T = R, then we have a (0,6) tensor R ⋅R.
The manifold (M,g) is called semi-symmetric space if

R ⋅R = 0.

and called Ricci semi-symmetric space if

R ⋅ S = 0,

where S is the Ricci curvature tensor.
Also, we can determine a (0, k + 2) tensor field Q(A,T ), associated

with any (0, k) tensor field T and any symmetric (0,2) tensor field A by

(2.6) Q(A,T )(X1,X2, ...Xk,X,Y ) = ((X ∧A Y ) ⋅ T )(X1,X2, ...Xk))

= −T ((X ∧A Y )X1,X2, ...Xk)

−T (X1, (X ∧A Y )X2, ...Xk) − ...

−T (X1,X2, ..., (X ∧A Y )Xk)

where (X ∧A Y ) is the endomorphism given by

(2.7) (X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y.

Particulary, if we put A = g we get

(2.8) (X ∧g Y )Z = g(Y,Z)X − g(X,Z)Y.
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From now we will write (X ∧g Y ) as (X ∧ Y ).
The Weyl-projective curvature tensor P on M is defined by

(2.9) P (X,Y )Z = R(X,Y )Z −
1

2
[g(Y,Z)QX − g(X,Z)QY ],

where Q is the Ricci operator Q defined by S(X,Y ) = g(QX,Y ), S being
the Ricci curvature tensor. Another form of Weyl-projective curvature
tensor is given by

(2.10) P (X,Y )Z = R(X,Y )Z −
1

2n
[S(Y,Z)X − g(X,Z)Y ]

= R(X,Y )Z −
1

2n
(X ∧S Y )Z.

The manifold (M,g) is called projectively-semi-symmetric space if

R ⋅ P = 0

and where P is the Weyl-projective-curvature tensor.

3. Trans Sasakian Manifold and Space form

Let (M,ϕ, ξ, η, g) be an almost contact metric manifold. If there are
smooth functions α,β on M satisfying

(∇ϕ)(X,Y ) = α[g(X,Y )ξ − η(Y )X] + β[g(ϕX,Y )ξ − η(Y )ϕX]

for all X,Y ∈ X(M). Then the structure (ϕ, ξ, η, g, α, β) is said to be a
trans-Sasakian structure and the manifold (M,ϕ, ξ, η, g, α, β) is said
to be a trans-Sasakian manifold of type (α,β). Trans-Sasakian mani-
folds of type (0,0), (α,0) and (0, β) are called cosymplectic, α-Sasakian,
and β-Kenmotsu manifolds respectively. Sasakian manifolds appear as
examples of α-Sasakian manifolds, with α = 1 and β = 0 and Kenmotsu
manifolds appear when α = 0 and β = 1. Marrero [6] has shown that a
trans-Sasakian manifold of dimension ≥ 5 is either cosymplectic mani-
fold, or α-Sasakian manifold, or β-Kenmotsu manifold.

A trans-Sasakian manifold M2n+1 of constant ϕ-sectional curvature
c is called a trans-Sasakian space form denoted by M2n+1(c) and its
curvature tensor is given by

(3.1) R(X,Y )Z =
α(c + 3) + β(c − 3)

4
[g(Y,Z)X − g(X,Z)Y ]

+
α(c − 1) + β(c + 1)

4
{[η(X)Y −η(Y )X]η(Z)+[g(X,Z)η(Y )
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−g(Y,Z)η(X)]ξ +g(ϕY,Z)ϕX−g(ϕX,Z)ϕY +2g(X,ϕY )ϕZ}.

It can also be written by (2.2) and (2.8), as

(3.2) R(X,Y )Z = (α−β)(X∧Y )Z+
α(c − 1) + β(c + 1)

4
{(ϕ2X∧ϕ2Y )Z

+(φX ∧ ϕY )Z + 2g(X,ϕY )ϕZ}.

The Ricci tensor on trans-Sasakian space form defined by

(3.3) S(X,Y ) =
1

2
[c(n + 1)(α + β) + (3n − 1)(α − β)] g(X,Y )

−
n + 1

2
[c(α + β) − (α − β)]η(X)η(Y ).

It can also be written by (2.2), as

(3.4) S(X,Y ) = 2ng(X,Y ) +
n + 1

2
[c(α + β) − (α − β)] g(ϕX,ϕY ).

Lemma 3.1. Let M2n+1(c) be a trans-Sasakian space form and X,Y ∈

X(M), then the following properties hold :

(a) ϕ ⋅ S = 0.
(b) (X ∧ Y ) ⋅ S = 0 iff c(α + β) = α − β.
(c) (ϕX ∧ ϕY ) ⋅ S = 0.
(d) (ϕ2X ∧ ϕ2Y ) ⋅ S = 0.

Proof. (a) Since ϕ is a tensor field, we have

(ϕ ⋅S)(U,V ) = −S(ϕU,V )−S(U,ϕV )

= −
1

2
[c(n + 1)(α + β) + (3n − 1)(α − β)] {g(ϕU,V ) + g(U,ϕV )}

[Using the property (ii)]

= −
1

2
[c(n + 1)(α + β) + (3n − 1)(α − β)] {g(ϕU,V )−g(ϕU,V )} = 0

[by (2.4)]
Thus (ϕ ⋅ S)(U,V ) = 0 for any U,V ∈ X(M).

(b) For any U,V ∈ X(M), we have

((X∧Y ).S)(U,V ) = −S((X∧Y )U,V )−S(U, (X∧Y )V )

= −g(Y,U)S(X,V ) + g(X,U)S(Y,V )

−g(Y,V )S(U,X) + g(X,V )S(U,Y ) [by (2.8)]

= −
n + 1

2
[c(α + β) − (α − β)] {−g(Y,U)η(X)η(V ) + g(X,U)η(Y )η(V )

−g(Y,V )η(U)η(X) + g(X,V )η(U)η(Y )} [by (3.3)]
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Since, {−g(Y,U)η(X)η(V )+g(X,U)η(Y )η(V )−g(Y,V )η(U)η(X)

+ g(X,V )η(U)η(Y )} ≠ 0 always and α, β are nonzero functions,
therefore

((X ∧ Y ).S)(U,V ) = 0 iff c(α + β) − (α − β) = 0.

(c) For any U,V ∈ X(M), we have

((ϕX∧ϕY ).S)(U,V ) = −S((ϕX∧ϕY )U,V )−S(U, (ϕX∧ϕY )V )

= −g(ϕY,U)S(ϕX,V ) + g(ϕX,U)S(ϕY,V )

−g(ϕY,V )S(U,ϕX) + g(ϕX,V )S(U,ϕY )

=
1

2
[c(n + 1)(α + β) + (3n − 1)(α − β)] {−g(ϕ2Y,U)g(ϕ2X,V )

+g(ϕ2X,U)g(ϕ2Y,V ) − g(ϕ2Y,V )g(U,ϕ2X)

+g(ϕ2X,V )g(U,ϕ2Y )} [using (2.8) and property (ii)]

= 0.
(d) Proof is similar to (c).

Theorem 3.2. A trans-Sasakian space form M2n+1(c) of type (α,β)
is Ricci-semi-symmetric if and only if c(α + β) = α − β.

Proof. The curvature tensor is of the form

R(X,Y ) = (α − β)(X ∧ Y ) +
α(c − 1) + β(c + 1)

4
{(ϕ2X ∧ ϕ2Y )

+(ϕX ∧ ϕY ) + 2g(X,ϕY )ϕ}

So,

R(X,Y ) ⋅ S = (α − β)(X ∧ Y ) ⋅ S +
α(c − 1) + β(c + 1)

4
{(ϕ2X ∧ ϕ2Y ) ⋅ S

+(ϕX ∧ ϕY ) ⋅ S + 2g(X,ϕY )ϕ ⋅ S}

By the lemma-3.1, we have

R.S = 0 if and only if c(α + β) − (α − β) = 0.

Lemma 3.3. Let M2n+1(c) be a trans-Sasakian space form of type
(α,β) and X,Y ∈ X(M), then the following properties hold :

(a) ϕ ⋅R = 0.
(b) (ϕX ∧ ϕY ) ⋅R = −(X ∧ Y ) ⋅R
(c) (X ∧S Y ).R = 2n(X ∧ Y ) ⋅R
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Proof. (a) For any X,Y,U,V ∈ X(M)

(ϕ ⋅R)(X,Y,U,V ) = −R(ϕX,Y,U,V ) −R(X,ϕY,U,V )

−R(X,Y,ϕU,V ) −R(X,Y,U,ϕV )

= −g(R(ϕX,Y )U,V ) − g(R(X,ϕY )U,V )

−g(R(X,Y )ϕU,V ) − g(R(X,Y )U,ϕV )

Using property (ii) and after a long and straightforward com-
putation we get

(ϕ ⋅R)(X,Y,U,V ) =

−
α(c − 1) + β(c + 1)

4
[−g(ϕY,U)g(ϕX,ϕV ) + g(ϕX,ϕU)g(ϕY,V )

−g(ϕY,ϕU)g(ϕX,V )+g(ϕX,U)g(ϕY,ϕV )+g(ϕY,ϕU)g(ϕX,V )

−g(ϕX,ϕU)g(ϕY,V ) + g(ϕY,U)g(ϕX,ϕV ) − g(ϕX,U)g(ϕY,ϕV )] = 0

(b) For any X,Y,Z,U,V,W ∈ X(M),

((ϕX ∧ ϕY ) ⋅R)(Z,U,V,W ) = −R((ϕX ∧ ϕY )Z,U,V,W )

−R(Z, (ϕX ∧ ϕY )U,V,W )

−R(Z,U, (ϕX ∧ ϕY )V,W )

−R(Z,U,V, (ϕX ∧ ϕY )W )

= −g(R[(ϕX ∧ ϕY )Z,U]V,W )

−g(R[Z, (ϕX ∧ ϕY )U]V,W )

−g(R[Z,U](ϕX ∧ ϕY )V,W )

−g(R[Z,U]V, (ϕX ∧ ϕY )W )

Using property (ii) and (2.8) and after a long and straightforward
computation we get the result.

(c) The Ricci curvature tensor can be written as

S(X,Y ) = 2ng(X,Y ) +
n + 1

2
[c(α + β) − (α − β)] g(ϕX,ϕY ).

So, we have

S(Y,Z)X = 2ng(Y,Z)X +
1

2
[(n + 1)(c − 1)]g(ϕY,ϕZ)X

and

S(X,Z)Y = 2ng(X,Z)Y +
n + 1

2
[c(α + β) − (α − β)] g(ϕX,ϕZ)Y.

Thus,

(X∧SY )Z = S(Y,Z)X−S(X,Z)Y = 2n{g(Y,Z)X−g(X,Z)Y }
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+
n + 1

2
[c(α + β) − (α − β)] {g(ϕY,ϕZ)X−g(ϕX,ϕZ)Y }.

= 2n(X ∧Y )Z +
n + 1

2
[c(α + β) − (α − β)] {g(ϕY,ϕZ)X −g(ϕX,ϕZ)Y }.

If we put Z = R(the Riemann curvature tensor), then

(X ∧S Y ) ⋅R = 2n(X ∧ Y ) ⋅R +
n + 1

2
[c(α + β) − (α − β)] {g(ϕY,ϕ ⋅R)X

−g(ϕX,ϕ ⋅R)Y }.

From lemma-3.3(a) ϕ ⋅R = 0, therefore

(X ∧S Y ) ⋅R = 2n(X ∧ Y ) ⋅R.

Definition 3.4. A Riemannian manifold (M,g), dimM ≥ 3, is said
to be pseudo-symmetric (in the sense of R. Deszcz) if the (0,6) tensor
field R ⋅R and Q(g,R) on M are linearly dependent, i.e., if there exists
a function LR ∶M → R such that

R ⋅R = LRQ(g,R)

holds on UR = {x ∈ M ∣R − (τ/n(n − 1))G ≠ 0}, where τ is the scalar
curvature of M and G is the (0,4) tensor field of M defined by

G(X1,X2,X3,X4) = g((X1 ∧X2)X3,X4)

see [3].

Theorem 3.5. Every trans-Sasakian space formsM2n+1(c) is pseudo-
symmetric, more precisely for every trans-Sasakian space forms:

R(X,Y ) ⋅R = (α − β)Q(g,R) = (α − β)(X ∧ Y ) ⋅R.

Proof. The curvature tensor is of the form

R(X,Y ) = (α − β)(X ∧ Y ) +
α(c − 1) + β(c + 1)

4
{(ϕ2X ∧ ϕ2Y )

+(ϕX ∧ ϕY ) + 2g(X,ϕY )ϕ}

So,

R(X,Y ) ⋅R = (α − β)(X ∧ Y ) ⋅R +
α(c − 1) + β(c + 1)

4
{(ϕ2X ∧ ϕ2Y ) ⋅ S

+(ϕX ∧ ϕY ) ⋅R + 2g(X,ϕY )ϕ ⋅R}

By the lemma-3.3 (a) and (b), we have

R(X,Y ) ⋅R = (α − β)(X ∧ Y ) ⋅R = (α − β)Q(g,R).
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Corollary 3.6. A trans-Sasakian space forms M2n+1(c) can not be
semi-symmetric.

Definition 3.7. In a Riemannian manifold (M,g), dimM ≥ 3, if the
(0,6) tensor field R ⋅ R and Q(S,R) are linearly dependent, then the
manifold is called Ricci-generalized-pseudo-symmetric [4]. That is
equivalent to

R ⋅R = LSQ(S,R)

holding on US = {x ∈M ∣ Q(S,R) ≠ 0}, where LS is a function on US .

Theorem 3.8. A trans-Sasakian space forms M2n+1(c) of type (α,β)
is Ricci-generalized-pseudo-symmetric.

Proof. By lemma-3.3 (c) and the result of Theorem 3.5

R(X,Y ) ⋅R = (α − β)(X ∧ Y ) ⋅R =
α − β

2n
(X ∧S Y ) ⋅R = LSQ(S,R)

where LS =
α−β
2n is a function on M ⊇ US . Hence the result.

Lemma 3.9. In a trans-Sasakian space form M2n+1(c) the following
are hold:

(a) ϕ ⋅ P = 0,
(b) (X ∧ Y ) ⋅ P = (X ∧ Y ) ⋅R

Proof. (a)

(ϕ ⋅ P )(X,Y,U,V ) = −P (ϕX,Y,U,V ) − P (X,ϕY,U,V )

−P (X,Y,ϕU,V ) − P (X,Y,U,ϕV )

= −g(P (ϕX,Y )U,V ) − g(P (X,ϕY )U,V )

−g(P (X,Y )ϕU,V ) − g(P (X,Y )U,ϕV )

= ϕ ⋅R [by (2.4), (3.1) and (3.3)]

= 0. [by lemma-3.3(a)]

(b)

((X∧Y )⋅P )(Z,U,V,W ) = −P ((X∧Y )Z,U,V,W )−P (Z, (X∧Y )U,V,W )

−P (Z,U, (X∧Y )V,W )−P (Z,U,V, (X∧Y )W )

[by (2.8) and (2.10)]

= −R((X∧Y )Z,U,V,W )−R(Z, (X∧Y )U,V,W )

−R(Z,U, (X∧Y )V,W )−R(Z,U,V, (X∧Y )W )

= ((X ∧ Y ) ⋅R)(Z,U,V,W ) [by (2.6)]
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Theorem 3.10. A trans-Sasakian space formsM2n+1(c) of type (α,β)
is not projectively semi-symmetric.

Proof. The curvature tensor of the form (3.2) is

R(X,Y ) = (α − β)(X ∧ Y ) +
α(c − 1) + β(c + 1)

4
{(ϕ2X ∧ ϕ2Y )

+(ϕX ∧ ϕY ) + 2g(X,ϕY )ϕ}.

So,

R(X,Y ) ⋅ P = (α − β)(X ∧ Y ) ⋅ P +
α(c − 1) + β(c + 1)

4
{(ϕ2X ∧ ϕ2Y ) ⋅ P

+(ϕX ∧ ϕY ) ⋅ P + 2g(X,ϕY )ϕ ⋅ P}

= (α − β)(X ∧ Y ) ⋅R +
α(c − 1) + β(c + 1)

4
{(ϕ2X ∧ϕ2Y ) ⋅R

+(ϕX ∧ ϕY ) ⋅R} [by lemma-3.9]

= (α − β)(X ∧ Y ) ⋅R +
α(c − 1) + β(c + 1)

4
{−(ϕX ∧ ϕY ) ⋅R

+(ϕX ∧ ϕY ) ⋅R} [by lemma-3.3(b)]

= (α − β)(X ∧ Y ) ⋅R ≠ 0 [∵ α ≠ β].

Definition 3.11. The Pseudo projective curvature tensor P on
a Riemannian manifold (M2n+1, g) is defined as:

(3.5) P (X,Y )Z = aR(X,Y )Z + b[S(Y,Z)X −S(X,Z)Y ]

−
τ

2n + 1
[
a

2n
+ b] [g(Y,Z)X − g(X,Z)Y ].

By (2.8), we can write

(3.6) P (X,Y )Z = aR(X,Y )Z+b(X ∧S Y )Z−
τ

2n + 1
[
a

2n
+ b] (X ∧Y )Z

where a and b are non-zero constants and τ is the scalar curvature.
If a = 1 and b = − 1

2n , then (3.5) and (3.6) take the form

P (X,Y )Z = P (X,Y )Z

where P is Projective curvature tensor. A Riemannian manifold is
pseudo-projectively semi-symmetric if

R ⋅ P = 0.

Lemma 3.12. (a) ϕ.P = 0
(b) (X ∧ Y ) ⋅ P = a(X ∧ Y ) ⋅R
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Proof is similar to lemma-3.9.

Theorem 3.13. A trans-Sasakian space forms M2n+1(c) of (α,β) is
not pseudo-projectively semi-symmetric.

Proof. The curvature tensor of the form (3.2) is

R(X,Y ) = (α − β)(X ∧ Y ) +
α(c − 1) + β(c + 1)

4
{(ϕ2X ∧ ϕ2Y )

+(ϕX ∧ ϕY ) + 2g(X,ϕY )ϕ}.

Now,

R(X,Y ) ⋅ P = (α − β)(X ∧ Y ) ⋅ P +
α(c − 1) + β(c + 1)

4
{(ϕ2X ∧ ϕ2Y ) ⋅ P

+(ϕX ∧ ϕY ) ⋅ P + 2g(X,ϕY )ϕ ⋅ P}

= a(α−β)(X ∧Y ) ⋅R+
α(c − 1) + β(c + 1)

4
{a(ϕ2X ∧ϕ2Y ) ⋅R

+a(ϕX ∧ ϕY ) ⋅R} [by lemma-3.12]

= a(α−β)(X ∧Y ) ⋅R+
α(c − 1) + β(c + 1)

4
{−a(ϕX ∧ϕY ) ⋅R

+a(ϕX ∧ ϕY ) ⋅R} [by lemma-3.3(b)]

= a(α − β)(X ∧ Y ) ⋅R ≠ 0 [∵ α ≠ β and a ≠ 0].
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