SYMMETRIES ON TRANS-SASAKIAN SPACE FORMS

Sibsankar Panda*, Arindam Bhattacharya**, and Kalyan
Halder ${ }^{* * *}$

Abstract. In this article we have studied different types of symmetricness of trans-Sasakian space forms.

1. Introduction

In 1985, J.A. Oubiña [8] introduced a new class of almost contact manifold namely trans-Sasakian manifold of type (α, β). This class contains α-Sasakian, β-Kenmotsu and cosymplectic manifolds. In particular when $\alpha=1$ and $\beta=0$ the manifolds are Sasakian manifolds which are analogues to Kähler manifolds. A Kähler manifold of constant holomorphic curvature is called a complex space form. Sasakian space forms are analogues to complex space forms. Many geometers [7,1] studied the symmetric properties on Sasakian space forms. On the other hand a class of almost contact Riemannian manifolds abstracted by Kenmotsu [5] which are normal but not Sasakian are called Kenmotsu manifolds. β-Kenmotsu manifolds are the generalization of Kenmotsu manifolds. A Kenmotsu manifold with constant φ-holomorphic sectional curvature is called a Kenmotsu space form. In this article we first introduced the trans-Sasakian space form, and studied the several interesting symmetric properties as semi-symmetry, Ricci-semi-symmetry, pseudo-symmetry, Ricci-generalized-pseudo-symmetry, Weyl-projective-semi-symmetry and pseudo-projective-semi-symmetry on the trans-Sasakian space form.

[^0]
2. Preliminaries

Let M be a $(2 n+1)$ dimensional manifold and φ, ξ and η be a tensor field of type $(1,1)$, a vector field, a 1 form on M respectively. If φ, ξ and η satisfy the conditions

$$
\begin{equation*}
\eta(\xi)=1 \quad \text { and } \quad \varphi^{2} X=-X+\eta(X) \xi \tag{2.1}
\end{equation*}
$$

for any vector field X on M, then M is said to have an almost contact structure (φ, ξ, η) and is called an almost contact manifold.

Using equation (2.1), for an almost contact structure (φ, ξ, η) one can prove the following properties:
(i) $\varphi(\xi)=0$,
(ii) $\eta \circ \varphi=0$,
(iii) $\operatorname{rank} \varphi=2 n$.

Every almost contact manifold M admits a Riemannian metric tensor field g such that

$$
\begin{gather*}
\eta(X)=g(X, \xi) \tag{2.2}\\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.3}\\
g(\varphi X, Y)=-g(X, \varphi Y) \tag{2.4}
\end{gather*}
$$

The metric tensor field g called an associated Riemannian metric tensor field to the given almost contact structure (φ, ξ, η). If M admits the structure $(\varphi, \xi, \eta, g), g$ being an associated Riemannian metric tensor field of an almost contact structure (φ, ξ, η) then M is said to have an almost contact metric structure (φ, ξ, η, g) and is called an almost contact metric manifold.

For an $(2 n+1)$ dimensional almost contact manifold M with almost contact structure (φ, ξ, η), we consider a product manifold $M \times \mathbb{R}$, where \mathbb{R} denotes a real line. Then a vector field on $M \times \mathbb{R}$ is given by $(X, f(d / d t))$, where X is a vector field tangent to M, t the coordinate of \mathbb{R} and f a function on $M \times \mathbb{R}$. We define a linear map J on the tangent space of $M \times \mathbb{R}$ by

$$
\begin{equation*}
J\left(X, f \frac{d}{d t}\right)=\left(\varphi X-f \xi, \eta(X) \frac{d}{d t}\right) \tag{2.5}
\end{equation*}
$$

Then we have $J^{2}=-I$ and hence J is an almost complex structure on $M \times \mathbb{R}$. The almost complex structure J is said to be integrable if its Nijenhuis torsion N vanishes, where

$$
N(X, Y)=J^{2}[X, Y]+[J X, J Y]-J[J X, Y]-J[X, J Y]
$$

If the almost complex structure J on $M \times \mathbb{R}$ is integrable, we say that the almost contact structure (φ, ξ, η) is normal. A normal almost contact metric manifold is called Sasakian manifold [2]. The sectional curvature of the plane section spanned by the unit tangent vector field X orthogonal to ξ and φX is called a φ-sectional curvature. If M has a constant φ-sectional curvature c, then M is called a Sasakian space forms.

Let (M, g) be an n dimensional Riemannian manifold $n>2$, its curvature tensor defined by

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

Let T be $(0, k)$ tensor, define a $(0,2+k)$ tensor field $R \cdot T$ by

$$
\begin{aligned}
&(R \cdot T)\left(X_{1}, X_{2}, \ldots X_{k}, X, Y\right)=R(X, Y)\left(T\left(X_{1}, X_{2}, \ldots X_{k}\right)\right) \\
&=-T\left(R(X, Y) X_{1}, X_{2}, \ldots X_{k}\right) \\
&-T\left(X_{1}, R(X, Y) X_{2}, \ldots X_{k}\right)-\ldots \\
&-T\left(X_{1}, X_{2}, \ldots, R(X, Y) X_{k}\right)
\end{aligned}
$$

one has

$$
R(X, Y) \cdot T=\nabla_{X}\left(\nabla_{Y} T\right)-\nabla_{Y}\left(\nabla_{X} T\right)-\nabla_{[X, Y]} T
$$

When $T=R$, then we have a $(0,6)$ tensor $R \cdot R$.
The manifold (M, g) is called semi-symmetric space if

$$
R \cdot R=0
$$

and called Ricci semi-symmetric space if

$$
R \cdot S=0
$$

where S is the Ricci curvature tensor.
Also, we can determine a $(0, k+2)$ tensor field $Q(A, T)$, associated with any $(0, k)$ tensor field T and any symmetric $(0,2)$ tensor field A by

$$
\begin{array}{r}
\left.Q(A, T)\left(X_{1}, X_{2}, \ldots X_{k}, X, Y\right)=\left(\left(X \wedge_{A} Y\right) \cdot T\right)\left(X_{1}, X_{2}, \ldots X_{k}\right)\right) \tag{2.6}\\
=-T\left(\left(X \wedge_{A} Y\right) X_{1}, X_{2}, \ldots X_{k}\right) \\
-T\left(X_{1},\left(X \wedge_{A} Y\right) X_{2}, \ldots X_{k}\right)-\ldots \\
\quad-T\left(X_{1}, X_{2}, \ldots,\left(X \wedge_{A} Y\right) X_{k}\right)
\end{array}
$$

where $\left(X \wedge_{A} Y\right)$ is the endomorphism given by

$$
\begin{equation*}
\left(X \wedge_{A} Y\right) Z=A(Y, Z) X-A(X, Z) Y \tag{2.7}
\end{equation*}
$$

Particulary, if we put $A=g$ we get

$$
\begin{equation*}
\left(X \wedge_{g} Y\right) Z=g(Y, Z) X-g(X, Z) Y \tag{2.8}
\end{equation*}
$$

From now we will write $\left(X \wedge_{g} Y\right)$ as $(X \wedge Y)$.
The Weyl-projective curvature tensor P on M is defined by

$$
\begin{equation*}
P(X, Y) Z=R(X, Y) Z-\frac{1}{2}[g(Y, Z) Q X-g(X, Z) Q Y] \tag{2.9}
\end{equation*}
$$

where Q is the Ricci operator Q defined by $S(X, Y)=g(Q X, Y), S$ being the Ricci curvature tensor. Another form of Weyl-projective curvature tensor is given by

$$
\begin{align*}
P(X, Y) Z & =R(X, Y) Z-\frac{1}{2 n}[S(Y, Z) X-g(X, Z) Y] \tag{2.10}\\
= & R(X, Y) Z-\frac{1}{2 n}(X \wedge S Y) Z .
\end{align*}
$$

The manifold (M, g) is called projectively-semi-symmetric space if

$$
R \cdot P=0
$$

and where P is the Weyl-projective-curvature tensor.

3. Trans Sasakian Manifold and Space form

Let (M, φ, ξ, η, g) be an almost contact metric manifold. If there are smooth functions α, β on M satisfying

$$
(\nabla \varphi)(X, Y)=\alpha[g(X, Y) \xi-\eta(Y) X]+\beta[g(\varphi X, Y) \xi-\eta(Y) \varphi X]
$$

for all $X, Y \in \mathfrak{X}(M)$. Then the structure $(\varphi, \xi, \eta, g, \alpha, \beta)$ is said to be a trans-Sasakian structure and the manifold ($M, \varphi, \xi, \eta, g, \alpha, \beta$) is said to be a trans-Sasakian manifold of type (α, β). Trans-Sasakian manifolds of type $(0,0),(\alpha, 0)$ and $(0, \beta)$ are called cosymplectic, α-Sasakian, and β-Kenmotsu manifolds respectively. Sasakian manifolds appear as examples of α-Sasakian manifolds, with $\alpha=1$ and $\beta=0$ and Kenmotsu manifolds appear when $\alpha=0$ and $\beta=1$. Marrero [6] has shown that a trans-Sasakian manifold of dimension ≥ 5 is either cosymplectic manifold, or α-Sasakian manifold, or β-Kenmotsu manifold.

A trans-Sasakian manifold $M^{2 n+1}$ of constant φ-sectional curvature c is called a trans-Sasakian space form denoted by $M^{2 n+1}(c)$ and its curvature tensor is given by

$$
\begin{align*}
& R(X, Y) Z=\frac{\alpha(c+3)+\beta(c-3)}{4}[g(Y, Z) X-g(X, Z) Y] \tag{3.1}\\
& +\frac{\alpha(c-1)+\beta(c+1)}{4}\{[\eta(X) Y-\eta(Y) X] \eta(Z)+[g(X, Z) \eta(Y)
\end{align*}
$$

$$
-g(Y, Z) \eta(X)] \xi+g(\varphi Y, Z) \varphi X-g(\varphi X, Z) \varphi Y+2 g(X, \varphi Y) \varphi Z\}
$$

It can also be written by (2.2) and (2.8), as

$$
\begin{align*}
R(X, Y) Z= & (\alpha-\beta)(X \wedge Y) Z+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{\left(\varphi^{2} X \wedge \varphi^{2} Y\right) Z\right. \tag{3.2}\\
& +(\phi X \wedge \varphi Y) Z+2 g(X, \varphi Y) \varphi Z\} .
\end{align*}
$$

The Ricci tensor on trans-Sasakian space form defined by

$$
\begin{align*}
S(X, Y) & =\frac{1}{2}[c(n+1)(\alpha+\beta)+(3 n-1)(\alpha-\beta)] g(X, Y) \tag{3.3}\\
& -\frac{n+1}{2}[c(\alpha+\beta)-(\alpha-\beta)] \eta(X) \eta(Y)
\end{align*}
$$

It can also be written by (2.2), as

$$
\begin{equation*}
S(X, Y)=2 n g(X, Y)+\frac{n+1}{2}[c(\alpha+\beta)-(\alpha-\beta)] g(\varphi X, \varphi Y) . \tag{3.4}
\end{equation*}
$$

Lemma 3.1. Let $M^{2 n+1}(c)$ be a trans-Sasakian space form and $X, Y \in$ $\mathfrak{X}(M)$, then the following properties hold:
(a) $\varphi \cdot S=0$.
(b) $(X \wedge Y) \cdot S=0$ iff $c(\alpha+\beta)=\alpha-\beta$.
(c) $(\varphi X \wedge \varphi Y) \cdot S=0$.
(d) $\left(\varphi^{2} X \wedge \varphi^{2} Y\right) \cdot S=0$.

Proof. (a) Since φ is a tensor field, we have

$$
\begin{aligned}
& (\varphi \cdot S)(U, V)=-S(\varphi U, V)-S(U, \varphi V) \\
& \quad=-\frac{1}{2}[c(n+1)(\alpha+\beta)+(3 n-1)(\alpha-\beta)]\{g(\varphi U, V)+g(U, \varphi V)\}
\end{aligned}
$$

[Using the property (ii)]
$=-\frac{1}{2}[c(n+1)(\alpha+\beta)+(3 n-1)(\alpha-\beta)]\{g(\varphi U, V)-g(\varphi U, V)\}=0$
[by (2.4)]
Thus $(\varphi \cdot S)(U, V)=0$ for any $U, V \in \mathfrak{X}(M)$.
(b) For any $U, V \in \mathfrak{X}(M)$, we have

$$
\begin{array}{rlr}
((X \wedge Y) \cdot S)(U, V) & =-S((X \wedge Y) U, V)-S(U,(X \wedge Y) V) \\
& =-g(Y, U) S(X, V)+g(X, U) S(Y, V) & \\
& -g(Y, V) S(U, X)+g(X, V) S(U, Y) & \quad \text { by }(2.8)] \\
=-\frac{n+1}{2}[c(\alpha+\beta)-(\alpha-\beta)]\{-g(Y, U) \eta(X) \eta(V)+g(X, U) \eta(Y) \eta(V) \\
\quad-g(Y, V) \eta(U) \eta(X)+g(X, V) \eta(U) \eta(Y)\} & {[\text { by }(3.3)]}
\end{array}
$$

Since, $\{-g(Y, U) \eta(X) \eta(V)+g(X, U) \eta(Y) \eta(V)-g(Y, V) \eta(U) \eta(X)$ $+g(X, V) \eta(U) \eta(Y)\} \neq 0$ always and α, β are nonzero functions, therefore

$$
((X \wedge Y) \cdot S)(U, V)=0 \text { iff } c(\alpha+\beta)-(\alpha-\beta)=0 .
$$

(c) For any $U, V \in \mathfrak{X}(M)$, we have

$$
\begin{aligned}
&((\varphi X \wedge \varphi Y) \cdot S)(U, V)=-S((\varphi X \wedge \varphi Y) U, V)-S(U,(\varphi X \wedge \varphi Y) V) \\
&=-g(\varphi Y, U) S(\varphi X, V)+g(\varphi X, U) S(\varphi Y, V) \\
&-g(\varphi Y, V) S(U, \varphi X)+g(\varphi X, V) S(U, \varphi Y) \\
&=\frac{1}{2}[c(n+1)(\alpha+\beta)+(3 n-1)(\alpha-\beta)]\left\{-g\left(\varphi^{2} Y, U\right) g\left(\varphi^{2} X, V\right)\right. \\
&+ g\left(\varphi^{2} X, U\right) g\left(\varphi^{2} Y, V\right)-g\left(\varphi^{2} Y, V\right) g\left(U, \varphi^{2} X\right) \\
&+\left.g\left(\varphi^{2} X, V\right) g\left(U, \varphi^{2} Y\right)\right\}[\text { using }(2.8) \text { and property (ii)] }
\end{aligned}
$$

$$
=0 \text {. }
$$

(d) Proof is similar to (c).

Theorem 3.2. A trans-Sasakian space form $M^{2 n+1}(c)$ of type (α, β) is Ricci-semi-symmetric if and only if $c(\alpha+\beta)=\alpha-\beta$.

Proof. The curvature tensor is of the form

$$
\begin{gathered}
R(X, Y)=(\alpha-\beta)(X \wedge Y)+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{\left(\varphi^{2} X \wedge \varphi^{2} Y\right)\right. \\
+(\varphi X \wedge \varphi Y)+2 g(X, \varphi Y) \varphi\}
\end{gathered}
$$

So,

$$
\begin{gathered}
R(X, Y) \cdot S=(\alpha-\beta)(X \wedge Y) \cdot S+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{\left(\varphi^{2} X \wedge \varphi^{2} Y\right) \cdot S\right. \\
+(\varphi X \wedge \varphi Y) \cdot S+2 g(X, \varphi Y) \varphi \cdot S\}
\end{gathered}
$$

By the lemma-3.1, we have

$$
\text { R.S }=0 \text { if and only if } c(\alpha+\beta)-(\alpha-\beta)=0 .
$$

Lemma 3.3. Let $M^{2 n+1}(c)$ be a trans-Sasakian space form of type (α, β) and $X, Y \in \mathfrak{X}(M)$, then the following properties hold :
(a) $\varphi \cdot R=0$.
(b) $(\varphi X \wedge \varphi Y) \cdot R=-(X \wedge Y) \cdot R$
(c) $\left(X \wedge_{S} Y\right) \cdot R=2 n(X \wedge Y) \cdot R$

Proof. (a) For any $X, Y, U, V \in \mathfrak{X}(M)$

$$
\begin{aligned}
(\varphi \cdot R)(X, Y, U, V)= & -R(\varphi X, Y, U, V)-R(X, \varphi Y, U, V) \\
& -R(X, Y, \varphi U, V)-R(X, Y, U, \varphi V) \\
= & -g(R(\varphi X, Y) U, V)-g(R(X, \varphi Y) U, V) \\
& -g(R(X, Y) \varphi U, V)-g(R(X, Y) U, \varphi V)
\end{aligned}
$$

Using property (ii) and after a long and straightforward computation we get

$$
\begin{aligned}
& (\varphi \cdot R)(X, Y, U, V)= \\
& -\frac{\alpha(c-1)+\beta(c+1)}{4}[-g(\varphi Y, U) g(\varphi X, \varphi V)+g(\varphi X, \varphi U) g(\varphi Y, V) \\
& -g(\varphi Y, \varphi U) g(\varphi X, V)+g(\varphi X, U) g(\varphi Y, \varphi V)+g(\varphi Y, \varphi U) g(\varphi X, V) \\
& -g(\varphi X, \varphi U) g(\varphi Y, V)+g(\varphi Y, U) g(\varphi X, \varphi V)-g(\varphi X, U) g(\varphi Y, \varphi V)]=0
\end{aligned}
$$

(b) For any $X, Y, Z, U, V, W \in \mathfrak{X}(M)$,

$$
\begin{aligned}
((\varphi X \wedge \varphi Y) \cdot R)(Z, U, V, W)= & -R((\varphi X \wedge \varphi Y) Z, U, V, W) \\
& -R(Z,(\varphi X \wedge \varphi Y) U, V, W) \\
& -R(Z, U,(\varphi X \wedge \varphi Y) V, W) \\
& -R(Z, U, V,(\varphi X \wedge \varphi Y) W) \\
= & -g(R[(\varphi X \wedge \varphi Y) Z, U] V, W) \\
& -g(R[Z,(\varphi X \wedge \varphi Y) U] V, W) \\
& -g(R[Z, U](\varphi X \wedge \varphi Y) V, W) \\
& -g(R[Z, U] V,(\varphi X \wedge \varphi Y) W)
\end{aligned}
$$

Using property (ii) and (2.8) and after a long and straightforward computation we get the result.
(c) The Ricci curvature tensor can be written as

$$
S(X, Y)=2 n g(X, Y)+\frac{n+1}{2}[c(\alpha+\beta)-(\alpha-\beta)] g(\varphi X, \varphi Y)
$$

So, we have

$$
S(Y, Z) X=2 n g(Y, Z) X+\frac{1}{2}[(n+1)(c-1)] g(\varphi Y, \varphi Z) X
$$

and

$$
S(X, Z) Y=2 n g(X, Z) Y+\frac{n+1}{2}[c(\alpha+\beta)-(\alpha-\beta)] g(\varphi X, \varphi Z) Y
$$

Thus,
$\left(X \wedge_{S} Y\right) Z=S(Y, Z) X-S(X, Z) Y=2 n\{g(Y, Z) X-g(X, Z) Y\}$

$$
\begin{aligned}
& +\frac{n+1}{2}[c(\alpha+\beta)-(\alpha-\beta)]\{g(\varphi Y, \varphi Z) X-g(\varphi X, \varphi Z) Y\} . \\
& =2 n(X \wedge Y) Z+\frac{n+1}{2}[c(\alpha+\beta)-(\alpha-\beta)]\{g(\varphi Y, \varphi Z) X-g(\varphi X, \varphi Z) Y\} . \\
& \text { If we put } Z=R(\text { the Riemann curvature tensor }), \text { then }
\end{aligned}
$$

$$
\begin{gathered}
\left(X \wedge_{S} Y\right) \cdot R=2 n(X \wedge Y) \cdot R+\frac{n+1}{2}[c(\alpha+\beta)-(\alpha-\beta)]\{g(\varphi Y, \varphi \cdot R) X \\
-g(\varphi X, \varphi \cdot R) Y\}
\end{gathered}
$$

From lemma-3.3(a) $\varphi \cdot R=0$, therefore

$$
\left(X \wedge_{S} Y\right) \cdot R=2 n(X \wedge Y) \cdot R
$$

Definition 3.4. A Riemannian manifold (M, g), $\operatorname{dim} M \geq 3$, is said to be pseudo-symmetric (in the sense of R. Deszcz) if the $(0,6)$ tensor field $R \cdot R$ and $Q(g, R)$ on M are linearly dependent, i.e., if there exists a function $\mathcal{L}_{R}: M \rightarrow \mathbb{R}$ such that

$$
R \cdot R=\mathcal{L}_{R} Q(g, R)
$$

holds on $\mathcal{U}_{R}=\{x \in M \mid R-(\tau / n(n-1)) G \neq 0\}$, where τ is the scalar curvature of M and G is the $(0,4)$ tensor field of M defined by

$$
G\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=g\left(\left(X_{1} \wedge X_{2}\right) X_{3}, X_{4}\right)
$$

see [3].
Theorem 3.5. Every trans-Sasakian space forms $M^{2 n+1}(c)$ is pseudosymmetric, more precisely for every trans-Sasakian space forms:

$$
R(X, Y) \cdot R=(\alpha-\beta) Q(g, R)=(\alpha-\beta)(X \wedge Y) \cdot R
$$

Proof. The curvature tensor is of the form

$$
\begin{gathered}
R(X, Y)=(\alpha-\beta)(X \wedge Y)+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{\left(\varphi^{2} X \wedge \varphi^{2} Y\right)\right. \\
+(\varphi X \wedge \varphi Y)+2 g(X, \varphi Y) \varphi\}
\end{gathered}
$$

So,

$$
\begin{gathered}
R(X, Y) \cdot R=(\alpha-\beta)(X \wedge Y) \cdot R+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{\left(\varphi^{2} X \wedge \varphi^{2} Y\right) \cdot S\right. \\
+(\varphi X \wedge \varphi Y) \cdot R+2 g(X, \varphi Y) \varphi \cdot R\}
\end{gathered}
$$

By the lemma-3.3 (a) and (b), we have

$$
R(X, Y) \cdot R=(\alpha-\beta)(X \wedge Y) \cdot R=(\alpha-\beta) Q(g, R)
$$

Corollary 3.6. A trans-Sasakian space forms $M^{2 n+1}(c)$ can not be semi-symmetric.

Definition 3.7. In a Riemannian manifold $(M, g), \operatorname{dim} M \geq 3$, if the $(0,6)$ tensor field $R \cdot R$ and $Q(S, R)$ are linearly dependent, then the manifold is called Ricci-generalized-pseudo-symmetric [4]. That is equivalent to

$$
R \cdot R=\mathcal{L}_{S} Q(S, R)
$$

holding on $\mathcal{U}_{S}=\{x \in M \mid Q(S, R) \neq 0\}$, where \mathcal{L}_{S} is a function on \mathcal{U}_{S}.
Theorem 3.8. A trans-Sasakian space forms $M^{2 n+1}(c)$ of type (α, β) is Ricci-generalized-pseudo-symmetric.

Proof. By lemma-3.3 (c) and the result of Theorem 3.5
$R(X, Y) \cdot R=(\alpha-\beta)(X \wedge Y) \cdot R=\frac{\alpha-\beta}{2 n}\left(X \wedge_{S} Y\right) \cdot R=\mathcal{L}_{S} Q(S, R)$
where $\mathcal{L}_{S}=\frac{\alpha-\beta}{2 n}$ is a function on $M \supseteq \mathcal{U}_{S}$. Hence the result.
Lemma 3.9. In a trans-Sasakian space form $M^{2 n+1}(c)$ the following are hold:
(a) $\varphi \cdot P=0$,
(b) $(X \wedge Y) \cdot P=(X \wedge Y) \cdot R$

Proof. (a)

$$
\begin{aligned}
(\varphi \cdot P)(X, Y, U, V)= & -P(\varphi X, Y, U, V)-P(X, \varphi Y, U, V) \\
& -P(X, Y, \varphi U, V)-P(X, Y, U, \varphi V) \\
= & -g(P(\varphi X, Y) U, V)-g(P(X, \varphi Y) U, V) \\
& -g(P(X, Y) \varphi U, V)-g(P(X, Y) U, \varphi V) \\
= & \varphi \cdot R \quad[\text { by }(2.4),(3.1) \text { and }(3.3)] \\
= & 0 . \quad[\text { by lemma-3.3(a)]}
\end{aligned}
$$

(b)

$$
\begin{aligned}
&((X \wedge Y) \cdot P)(Z, U, V, W)=-P((X \wedge Y) Z, U, V, W)-P(Z,(X \wedge Y) U, V, W) \\
&-P(Z, U,(X \wedge Y) V, W)-P(Z, U, V,(X \wedge Y) W) \\
& \quad[\operatorname{by}(2.8) \text { and }(2.10)] \\
&=-R((X \wedge Y) Z, U, V, W)-R(Z,(X \wedge Y) U, V, W) \\
&-R(Z, U,(X \wedge Y) V, W)-R(Z, U, V,(X \wedge Y) W) \\
&=((X \wedge Y) \cdot R)(Z, U, V, W) \quad[\text { by }(2.6)]
\end{aligned}
$$

Theorem 3.10. A trans-Sasakian space forms $M^{2 n+1}(c)$ of type (α, β) is not projectively semi-symmetric.

Proof. The curvature tensor of the form (3.2) is

$$
\begin{gathered}
R(X, Y)=(\alpha-\beta)(X \wedge Y)+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{\left(\varphi^{2} X \wedge \varphi^{2} Y\right)\right. \\
+(\varphi X \wedge \varphi Y)+2 g(X, \varphi Y) \varphi\} .
\end{gathered}
$$

So,

$$
\begin{aligned}
R(X, Y) \cdot P= & (\alpha-\beta)(X \wedge Y) \cdot P+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{\left(\varphi^{2} X \wedge \varphi^{2} Y\right) \cdot P\right. \\
& +(\varphi X \wedge \varphi Y) \cdot P+2 g(X, \varphi Y) \varphi \cdot P\} \\
= & (\alpha-\beta)(X \wedge Y) \cdot R+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{\left(\varphi^{2} X \wedge \varphi^{2} Y\right) \cdot R\right. \\
& +(\varphi X \wedge \varphi Y) \cdot R\} \quad[\text { by lemma-3.9] } \\
= & (\alpha-\beta)(X \wedge Y) \cdot R+\frac{\alpha(c-1)+\beta(c+1)}{4}\{-(\varphi X \wedge \varphi Y) \cdot R \\
& +(\varphi X \wedge \varphi Y) \cdot R\} \quad[\text { by lemma-3.3(b)]} \\
= & (\alpha-\beta)(X \wedge Y) \cdot R \neq 0 \quad[\because \alpha \neq \beta] .
\end{aligned}
$$

Definition 3.11. The Pseudo projective curvature tensor \bar{P} on a Riemannian manifold $\left(M^{2 n+1}, g\right)$ is defined as:
(3.5) $\bar{P}(X, Y) Z=a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y]$

$$
-\frac{\tau}{2 n+1}\left[\frac{a}{2 n}+b\right][g(Y, Z) X-g(X, Z) Y] .
$$

By (2.8), we can write
(3.6) $\bar{P}(X, Y) Z=a R(X, Y) Z+b(X \wedge S Y) Z-\frac{\tau}{2 n+1}\left[\frac{a}{2 n}+b\right](X \wedge Y) Z$
where a and b are non-zero constants and τ is the scalar curvature.
If $a=1$ and $b=-\frac{1}{2 n}$, then (3.5) and (3.6) take the form

$$
\bar{P}(X, Y) Z=P(X, Y) Z
$$

where P is Projective curvature tensor. A Riemannian manifold is pseudo-projectively semi-symmetric if

$$
R \cdot \bar{P}=0 .
$$

Lemma 3.12. (a) $\varphi \cdot \bar{P}=0$
(b) $(X \wedge Y) \cdot \bar{P}=a(X \wedge Y) \cdot R$

Proof is similar to lemma-3.9.
Theorem 3.13. A trans-Sasakian space forms $M^{2 n+1}(c)$ of (α, β) is not pseudo-projectively semi-symmetric.

Proof. The curvature tensor of the form (3.2) is

$$
\begin{gathered}
R(X, Y)=(\alpha-\beta)(X \wedge Y)+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{\left(\varphi^{2} X \wedge \varphi^{2} Y\right)\right. \\
+(\varphi X \wedge \varphi Y)+2 g(X, \varphi Y) \varphi\}
\end{gathered}
$$

Now,

$$
\begin{aligned}
R(X, Y) \cdot \bar{P}= & (\alpha-\beta)(X \wedge Y) \cdot \bar{P}+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{\left(\varphi^{2} X \wedge \varphi^{2} Y\right) \cdot \bar{P}\right. \\
& +(\varphi X \wedge \varphi Y) \cdot \bar{P}+2 g(X, \varphi Y) \varphi \cdot \bar{P}\} \\
= & a(\alpha-\beta)(X \wedge Y) \cdot R+\frac{\alpha(c-1)+\beta(c+1)}{4}\left\{a\left(\varphi^{2} X \wedge \varphi^{2} Y\right) \cdot R\right. \\
& +a(\varphi X \wedge \varphi Y) \cdot R\} \quad[\text { by lemma-3.12] } \\
= & a(\alpha-\beta)(X \wedge Y) \cdot R+\frac{\alpha(c-1)+\beta(c+1)}{4}\{-a(\varphi X \wedge \varphi Y) \cdot R \\
& +a(\varphi X \wedge \varphi Y) \cdot R\} \quad[\text { by lemma-3.3(b)]} \\
= & a(\alpha-\beta)(X \wedge Y) \cdot R \neq 0 \quad[\because \alpha \neq \beta \text { and } a \neq 0] .
\end{aligned}
$$

References

[1] S. Pahan and A. Bhattacharyya, Some properties of three dimensional transsasakian manifolds with a semi-symmetric metric connection Lobachevskii J. Math., 37 (2016), 177-184.
[2] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. volume-509. Springer Verlag, 1976.
[3] R. Deszcz, On pseudo-symmetric spaces, Bull. Belg. Math. Soc. Ser. A, 44 (1992), 1-34.
[4] R. Deszcz and F. Defever, On warped product manifolds satisfying a certain curvature condition, Atti. Acad. Peloritana Cl. Sci. Fis. Mat. Natur., 69 (1991), 213-236.
[5] K. Kenmotsu, A class of almost contact riemannian manifolds, Tohoku Math. J., 24 (1972), 93-103.
[6] J. C. Marrero, The local structure of trans-sasakian manifolds, Annali di Matematica Pura ed Applicata, 162 (1992), 77-86.
[7] L. Verstraelen, MD. Belkhelfa, and R. Deszcz, Symmetry properties of sasakian space forms, Soochow Journal of Mathematics, 31 (2005), 611-616.
[8] J .A. Oubinã, New classes of almost contact metric structures, Publicationes Mathematicae Debrecen, 32 (1985), 187-193.
*
Department of Mathematics
Sidho-Kanho-Birsha University
E-mail: shibu.panda@gmail.com
**
Department of Mathematics
Jadavpur University
E-mail: bhattachar1968@yahoo.co.in

Department of Mathematics
Sidho-Kanho-Birsha University
E-mail: halderk@rediffmail.com

[^0]: Received Febraury 23, 2020; Accepted June 09, 2020
 2010 Mathematics Subject Classification: Primary 53C25; Secondary 53C35.
 Key words and phrases: Trans-Sasakian space form, Pseudo-symmetric, Ricci-generalized-pseudo-symmetric.

 * The corresponding author.

