Acknowledgement
본 연구는 기획재정부의 중소중견기업생산기술 실용화 및 기술지원 사업(Project No. JF200027)의 지원과 산업통상자원부의 기계산업핵심기술개발사업(Project No. KM200224, 10067766)의 지원으로 진행되었습니다.
References
- Mok, S. L., Kwong, C. K., Grasser, F., D'Arrigo, A., and Colombi, S., "Application of artificial neural network and fuzzy logic in a case-based system for initial process parameter setting of injection molding", J. Intell. Manuf., Vol. 13, No. 3, pp. 165-176, 2002. https://doi.org/10.1023/A:1015730705078
- Michaeli, W., and Schreiber, A. "Online Control of the Injection Molding Process Based on Process Variables", Adv. Polym. Tech., Vol. 28, No. 2, pp. 65-76, 2002. https://doi.org/10.1002/adv.20153
- Chen, J. Y., Yang, K. J., and Huang, S. M., "Online quality monitoring of molten resin in injection molding", Int. J. Heat Mass Transfer, Vol. 122, pp. 681-693, 2018. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.019
- Lee, J. H., and Kim, J. S., "A study on monitoring for process time and process properties by measuring vibration signals transmitted to the mold during injection molding", J. Korea Society of Die & Mold Engineering, Vol. 14, No. 3, pp. 8-16, 2020.
- Zhang, Z., Chen, J. C., and Zhu, J., "Development of an in-process, gap-caused flash monitoring system in injection molding processes", Int. J. Adv. Manuf. Technol., Vol. 26, pp. 1237-1245, 2005. https://doi.org/10.1007/s00170-004-2112-9