DOI QR코드

DOI QR Code

Improving evaluation metric of mobile application service with user review data

사용자 리뷰 데이터를 활용한 모바일 어플리케이션 서비스 평가 척도 개선

  • Received : 2019.09.17
  • Accepted : 2020.01.03
  • Published : 2020.01.31

Abstract

The mobile application market has grown over the past decade since the advent of smartphones, making it the largest market for electronic device software. As competition intensifies in the mobile application market, the impact of application evaluations on the consumption and usage patterns of users has also significantly increased. Therefore, research has been conducted on measures to evaluate mobile applications, but most of the research has relied on qualitative methods such as expert-centered interviews or surveys. In addition, evaluation measures are being constructed from the service provider's perspective, not from the service user's perspective. However, the possibility of application-specific analyses that minimize the subjectivity of researchers is growing, as large amounts of user review data enable quantitative analysis of actual users' assessment of applications. Therefore, this study presents a methodology that can complement current problems with existing quality assessments for mobile applications by utilizing user review data. To this end, the Topic Modeling technique LDA (Latent Dirichlet allocation) is applied in order to elucidate ways to improve existing evaluation measures from a user's perspective. The study is expected to reduce bias in service assessment due to the subjectivity of service providers and researchers as well as provide a measure of assessment by area of mobile applications from a consumer perspective.

모바일 어플리케이션 시장은 스마트폰의 등장 이후로 지난 10여 년의 성장을 통해 전자기기 소프트웨어 시장에서 가장 큰 시장을 보유하게 되었다. 모바일 어플리케이션 시장의 경쟁이 심화됨에 따라, 사용자의 소비와 사용 양태에 어플리케이션 평가가 끼치는 영향력 역시 큰 폭으로 상승하였다. 이에 따라 모바일 어플리케이션을 평가하기 위한 척도에 관한 연구들이 진행됐으나, 대부분의 연구가 전문가 중심의 인터뷰 또는 설문조사와 같은 정성적인 방법에 의존하였다. 또한, 서비스 사용자의 관점이 아닌 서비스 제공자의 관점에서 평가 척도가 구성되고 있다. 하지만 최근에는 대량의 사용자 리뷰(User Review) 데이터를 통해 실제 사용자들의 어플리케이션 평가의 정량적 분석이 가능해짐에 따라, 연구자의 주관성을 최소화하는 어플리케이션 영역별 분석의 가능성이 커지고 있다. 따라서 본 연구에서는 사용자 리뷰 데이터를 활용하여 모바일 어플리케이션들에 대한 기존의 품질 평가에 대한 문제점을 보완할 수 있는 방법론을 제시하고자 한다. 이를 위해 토픽모델링 기법인 LDA(Latent Dirichlet allocation)을 적용하여, 기존의 평가 척도를 사용자 관점에서 개선하는 방법을 제안한다. 본 연구를 통해 서비스 제공자 및 연구자의 주관성으로 인한 서비스 평가의 편향을 줄이고, 소비자 관점의 모바일 어플리케이션 영역별 평가 척도를 제공할 것으로 예상된다.

Keywords

References

  1. Xueqing Zeng, Xian Peng and Chun Lu., "Survey on the Quality Assessment Factors of Educational APP", In Educational Technology, 2017 International Symposium, IEEE, pp.196-200, 2017 DOI: https://doi.org/10.1109/iset.2017.52
  2. Gayatree Ganu, No'emie Elhadad and Am'elie Marian, "Beyond the Stars: Improving Rating Predictions using Review Text Content.", In WebDB, 2009 12th International Workshop, pp.1-6, 2009
  3. Ying-Feng Kuo, Chi-Ming Wub and Wei-Jaw Deng, "The relationships among service quality, perceived value, customer satisfaction, and post-purchase intention in mobile value-added services", Computers in Human Behavior, Vol.25, pp.887-896, 2009 DOI: https://doi.org/10.1016/j.chb.2009.03.003
  4. Hongxiu Li and Reima Suomi, "A Proposed Scale for Measuring E-service Quality", International Journal of u- and e-Service, Science and Technology, Vol.2, No.1, pp.1-10, 2009
  5. Daekook Kang and Yongtae Park, "Review-based measurement of customer satisfaction in mobile service: Sentiment analysis and VIKOR approach", Expert System with Applications, Vol.41, Issue 4, pp.1041-1050, 2014 DOI: https://doi.org/10.1016/j.eswa.2013.07.101
  6. Li-Jen Yang, Tzu-Chuan Chou and Ji-Feng Ding, "Evaluating service quality of mobile application stores: a comparison of there telecommunication companies in taiwan", International Journal of Innovative, Vol.8, No.4 pp.2563-2581, 2012
  7. Juho Hamaria, Nicolai Hannerb and Jonna Koivistoa, "Service quality explains why people use freemium services but not if they go premium: An empirical study in free-to-play games", International Journal of Information Management, Vol.37, pp.1449-1459, 2016 DOI: https://doi.org/10.1016/j.ijinfomgt.2016.09.004
  8. Wei-Tsong Wang and Wen-Yin Chen, "Assessing the Effects of Mobile Service Quality on Customer Satisfaction and the Continued Usage Intention of Mobile Service: A Study of Non-gaming Mobile Apps", In Cross-Cultural Design, 2016 Internatioal Conference, pp.459-467, 2016 DOI: https://doi.org/10.1007/978-3-319-40093-8_46
  9. Chun-Mei Chen, "Exploring the Mediated and Moderated Effects of Operator Service Quality on Customer Retention: Evidence from Taiwan's Mobile Market", Journal of Management Research, Vol.9, No.4, pp.21-42, 2017 DOI: https://doi.org/10.5296/jmr.v9i4.11589
  10. Bo Yan and Guanling Chen, "AppJoy: personalized mobile application discovery", Mobile Systems, Applications, and Services, 2011 9th International conference, pp.113-126, 2011 DOI: https://doi.org/10.1145/1999995.2000007
  11. Thomas L. Rakestraw, Rangamohan V. Eunni and Rammohan R. Kasuganti, "The mobile apps industry: A case study", Journal of Business Cases and Applications, Vol.9, pp.1-26, 2013
  12. Hee Jin Hur, Ha Kyung Lee and Ho Jung Choo, "Understanding usage intention in innovative mobile app service: Comparison between millennial and mature consumers", Computers in Human Behavior, Vol.73, pp.353-361, 2017 DOI: https://doi.org/10.1016/j.chb.2017.03.051
  13. Emmanouil Stiakakis and Christos K. Georgiadis, "A Model to Identify the Dimensions of Mobile Service Quality", In Mobile Business 10th International Conference, IEEE, pp.195-204, 2011 DOI: https://doi.org/10.1109/icmb.2011.43
  14. Yaobin Lu, Long Zhang and Bin Wangb, "A multidimensional and hierarchical model of mobile service quality", Electronic Commerce Research and Applications, Vol.8, pp.228-240, 2009. DOI: https://doi.org/10.1016/j.elerap.2009.04.002
  15. Liangjie Hong and Brian D. Davison, "Empirical study of topic modeling in Twitter", In Social Media Analytics, 2010 1st Workshop, pp.80-88, 2010. DOI: https://doi.org/10.1145/1964858.1964870
  16. David M. Blei, Andrew Y. Ng and Michael I. Jordan. "Latent Dirichlet Allocation", Journal of Machine Learning Research, Vol.3, pp.993-1022, 2003. DOI: https://doi.org/10.1162/jmlr.2003.3.4.-5.993