DOI QR코드

DOI QR Code

Analysis of Pole Ratio Effect of Magnetic Reducer

마그네틱 감속기의 극수비 영향 분석

  • Jung, Kwang Suk (Department of Mechanical Engineering, Korea National University of Transportation)
  • 정광석 (한국교통대학교 기계공학과)
  • Received : 2019.11.22
  • Accepted : 2020.01.03
  • Published : 2020.01.31

Abstract

In a concentric magnetic gear, which replaces the teeth of a mechanical gear with a permanent magnet, the polar ratio of the magnet that determines the reduction ratio affects the behavior of the magnetic gear dramatically. This study analyzed the density of transmission torque, the efficiency of torque considering the solid loss, and the torque quality, including the cogging characteristics using finite element analysis. When the pole number on the driving side was changed from two to five, it was confirmed that there was an optimal pole ratio, in which the transmission torque was maximized. Because eddy current generation density is proportional to the magnetic field, the transmission efficiency also shows a similar tendency to the transmission torque density, and the efficiency is more than 95% at a low gear ratio. The cogging characteristics due to the interaction of the permanent magnets with the limited number of poles are inversely proportional to the least common multiple between the number of magnets on the drive side and the number of modulator teeth. A test model was built for the transmission torque evaluation.

기계식 기어의 치를 영구자석으로 대체한 동심 마그네틱 기어에서 원주방향을 따라 놓인 모든 자석이 동력 전달에 관여하므로 감속비를 결정하는 자석의 극수비는 마그네틱 기어의 거동 특성에 큰 영향을 미친다. 본 논문에서는 극수비를 변화시켜가며 마그네틱 기어에서 생성되는 전달토크의 밀도, 동손을 고려한 토크의 효율, 코깅 특성을 포함한 토크의 품질 등을 유한요소 해석을 이용하여 비교 분석하였다. 구동측의 극수를 2극에서 5극까지 변화시킬 때 전달토크가 최대가 되는 최적의 극수비가 존재함을 확인하였으며 이는 모듈레이터를 통한 구동측 자기장의 필터링 성분에 직접적인 영향을 받다. 전달 효율 역시 와전류 생성 밀도와 자기장간에 비례특성이 있으므로 전달 토크 밀도와 유사한 경향을 나타내는 것을 알 수 있으며 낮은 기어비에서는 95% 이상의 효율을 보인다. 제한된 극수를 갖는 영구자석의 상호작용에 기인하는 코깅 특성은 일반적인 동기 모터에서와 같이 구동측 자석의 개수와 모듈레이터 치의 개수간의 최소공배수에 반비례하는 것을 확인할 수 있었다. 전달 토크 평가를 위해 실제 시험 모델이 제작되었고 실증시험이 진행되었다.

Keywords

References

  1. P. Rasmussen, T. Andersen, F. Joergensen, O. Nielsen, "Development of a high-performance magnetic gear", IEEE Trans. on Industry Applications, Vol. 41, No. 3, pp. 764-770, 2005. DOI: https://doi.org/10.1109/IAS.2003.1257784
  2. K. Atallah, S. Calverley, D. Howe, "Design, analysis and realization of a high-performance magnetic gear", IEE Proc. of the Electric Power Applications Conference, Vol. 151, No. 2, pp. 135-143, 2004. DOI: https://doi.org/10.1049/ip-epa:20040224
  3. S. J. Lee, K. S. Jung, "Characteristic study of a magnet gear speed reducer with a unified harmonic modulator", J. of the Korean Society of Manufacturing Technology Engineers, Vol. 24, No. 3, pp. 348-354, 2015. DOI: https://doi.org/10.7735/ksmte.2015.24.3.348
  4. D. Evans, Z. Zhu, "Influence of design parameters on magnetic gear's torque capability", 2011 IEEE Inter. Electric Machines & Drives Conference(IEMDC), Niagara Falls, pp. 1403-1408, 2011. DOI: https://doi.org/10.1109/IEMDC.2011.5994813
  5. L. Jing, L. Liu, M. Xiong, D. Feng, "Parameter analysis and optimization design for a concentric magnetic gear based on sinusoidal magnetization", IEEE Trans. on Applied Superconductivity, Vol. 24, No. 5, pp. 1-5, 2014. DOI: https://doi.org/10.1109/TASC.2014.2340460
  6. L. Jian, K. Chau, "Analytical calculation of magnetic field distribution in coaxial magnetic gears", Prog. in Electromagnetic Research, Vol. 92, pp. 1-16, 2009. DOI: https://doi.org/10.2528/PIER09032301
  7. K. S. Jung, "Characteristics of the double reduction gearing system using magnetic gears", J. of the Korean Society of Manufacturing Technology Engineers, Vol. 27, No. 5, pp. 417-423, 2018. DOI: https://doi.org/10.7735/ksmte.2018.27.5.417
  8. N. Niguchi, K. Hirata, M. Muramatsu, Y. Hayakawa, "Transmission torque characteristics in a magnetic gear", Int. Conf. on Electr. Machines(ICEM), pp. 1-6, 2010. DOI: https://doi.org/10.1109/ICELMACH.2010.5608143
  9. K. J. Meessen, J. H. Paulides, E. A. Lomonova, "Force calculations in 3D cylindrical structures using fourier analysis and the maxwell stress tensor", IEEE Trans. on Magnetics, Vol. 48, No. 1, pp. 536-545, 2012. DOI: https://doi.org/10.1109/TMAG.2012.2206821
  10. L. Jian, K. Chau, "A coaxial magnetic gear with halbach permanent magnet arrays", IEEE Trans. on Magnetics, Vol. 45, No. 10, pp. 4526-4529, 2010. DOI: https://doi.org/10.1109/TEC.2010.2046997